天津市四合庄中学2026届数学高二上期末综合测试模拟试题含解析_第1页
天津市四合庄中学2026届数学高二上期末综合测试模拟试题含解析_第2页
天津市四合庄中学2026届数学高二上期末综合测试模拟试题含解析_第3页
天津市四合庄中学2026届数学高二上期末综合测试模拟试题含解析_第4页
天津市四合庄中学2026届数学高二上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市四合庄中学2026届数学高二上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点2.设m,n是两条不同直线,,是两个不同平面,则下列说法错误的是()A.若,,则; B.若,,则;C.若,,则; D.若,,则3.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则4.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm),则此构件的表面积为()A. B.C. D.5.在平面直角坐标系中,双曲线的右焦点为,过双曲线上一点作轴的垂线足为,若,则该双曲线的离心率为()A. B.C. D.6.已知,,则的最小值为()A. B.C. D.7.元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的,输出的,则判断框中可以填()A. B.C. D.8.已知梯形ABCD中,,,且对角线交于点E,过点E作与AB所在直线的平行线l.若AB和CD所在直线的方程分别是与,则直线l与CD所在直线的距离为()A.1 B.2C.3 D.49.已知函数,则()A.0 B.1C.2 D.10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线已知的顶点,则的欧拉线方程为()A. B.C. D.11.已知等差数列中,,则()A.15 B.30C.45 D.6012.如图,在正方体中,是侧面内一动点,若到直线与直线的距离相等,则动点的轨迹所在的曲线是()A.直线 B.圆C.双曲线 D.抛物线二、填空题:本题共4小题,每小题5分,共20分。13.设等差数列的前项和为,且,,则__________.14.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______15.如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,是上底面上其余的八个点,则集合中的元素个数为______16.已知实数满足,则的取值范围是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求18.(12分)如图1是,,,,分别是边,上两点,且,将沿折起使得,如图2.(1)证明:图2中,平面;(2)图2中,求二面角的正切值.19.(12分)已知集合,.(1)当时,求AB;(2)设,,若是成立的充分不必要条件,求实数的取值范围.20.(12分)已知函数(Ⅰ)讨论函数的极值点的个数(Ⅱ)若,,求的取值范围21.(12分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率22.(10分)已知椭圆的离心率是,且过点.(1)求椭圆的标准方程;(2)若直线与椭圆交于A、B两点,线段的中点为,为坐标原点,且,求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A2、C【解析】直接由直线平面的定理得到选项正确;对于选项,m,n可能平行、相交或异面,所以该选项错误;对于选项,与内一直线l,所以,因为l为内一直线,所以.所以该选项正确.【详解】对于选项,若,,则,所以该选项正确;对于选项,若,,则,所以该选项正确;对于选项,若,,则m,n可能平行、相交或异面,所以该选项错误;对于选项,若,,则与内一直线l,所以,因为l为内一直线,所以.所以该选项正确.故选:C【点睛】本题主要考查空间直线平面位置关系判断,意在考查学生对这些知识的理解掌握水平.3、C【解析】对于A、B、D均可能出现,而对于C是正确的4、B【解析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.5、A【解析】根据条件可知四边形为正方形,从而根据边长相等,列式求双曲线的离心率.【详解】不妨设在第一象限,则,根据题意,四边形为正方形,于是,即,化简得,解得(负值舍去).故选:A.6、B【解析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【点睛】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.7、D【解析】根据程序框图的算法功能,模拟程序运行即可推理判断作答.【详解】由程序框图知,直到型循环结构,先执行循环体,条件不满足,继续执行循环体,条件满足跳出循环体,则有:当第一次执行循环体时,,,条件不满足,继续执行循环体;当第二次执行循环体时,,,条件不满足,继续执行循环体;当第三次执行循环体时,,,条件不满足,继续执行循环体;当第四次执行循环体时,,,条件不满足,继续执行循环体;当第五次执行循环体时,,,条件满足,跳出循环体,输出,于是得判断框中的条件为:,所以判断框中可以填:.故选:D8、B【解析】先求得直线AB和CD之间的距离,再求直线l与CD所在直线的距离即可解决.【详解】梯形ABCD中,,,且对角线交于点E,则有△与△相似,相似比为,则,点E到CD所在直线的距离为AB和CD所在直线距离的又AB和CD所在直线的距离为,则直线l与CD所在直线的距离为2故选:B9、C【解析】对函数f(x)求导即可求得结果.【详解】函数,则,,故选C【点睛】本题考查正弦函数的导数的应用,属于简单题.10、D【解析】根据题意得出的欧拉线即为线段的垂直平分线,然后求出线段的垂直平分线的方程即可.【详解】因为,所以线段的中点的坐标,线段所在直线的斜率,则线段的垂直平分线的方程为,即,因为,所以的外心、重心、垂心都在线段的垂直平分线上,所以的欧拉线方程为.故选:D【点睛】本题主要考走查直线的方程,解题的关键是准确找出欧拉线,属于中档题.11、D【解析】根据等差数列的性质,可知,从而可求出结果.【详解】解:根据题意,可知等差数列中,,则,所以.故选:D.12、D【解析】由到直线的距离等于到点的距离可得到直线的距离等于到点的距离,然后可得答案.【详解】因为到直线的距离等于到点的距离,所以到直线的距离等于到点的距离,所以动点的轨迹是以为焦点、为准线的抛物线故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据,利用等差数列前项和公式,列方程求出,再由,能求出【详解】等差数列的前项和为,且,,,解得,,,解得,故答案为:1014、【解析】根据数列递增和递减的定义求出实数a的取值范围.【详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:15、1【解析】根据空间平面向量的运算性质,结合空间向量垂直的性质、空间向量数量积的运算性质进行求解即可.【详解】由图像可知,,则因为棱长为1,,所以,所以,故集合中的元素个数为1故答案为:116、【解析】去绝对值分别列出每个象限解析式,数形结合利用距离求解范围.【详解】当,表示椭圆第一象限部分;当,表示双曲线第四象限部分;当,表示双曲线第二象限部分;当,不表示任何图形;以及两点,作出大致图象如图:曲线上的点到的距离为,根据双曲线方程可得第二四象限双曲线渐近线方程都是,与距离为2,曲线二四象限上的点到的距离为小于且无限接近2,考虑曲线第一象限的任意点设为到的距离,当时取等号,所以,则的取值范围是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)将已知条件整理变形为等比数列的首项和公比来表示,解方程组得到基本量,可得到通项公式(2)化简通项得,根据特点求和时采用错位相减法求解试题解析:(1)设等比数列的首项为,公比为,依题意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又单调递增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考点:1.等比数列通项公式;2.错位相减求和18、(1)证明见解析(2)【解析】(1)、利用线面垂直的判定,及线面垂直的性质即可证明;(2)、建立空间直角坐标系,分别求出平面、平面的法向量,利用求出两平面所成角的余弦值,进而求出求二面角的正切值.【小问1详解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小问2详解】由(1)知:平面,以为坐标原点,建立如图所示的空间直角坐标系,则,,,设平面的法向量为,平面的法向量为,则与,即与,..,观察可知二面角为钝二面角,二面角的正切值为.19、(1);(2).【解析】(1)由,解得范围,可得,由可得:,解得.即可得出(2)由,解得.根据是成立的必要条件,利用包含关系列不等式即可得出实数的取值范围【详解】(1)由,解得,可得:,可得:,化为:,解得,所以=.(2)q是p成立的充分不必要条件,所以集合B是集合A的真子集.由,解得,又集合A=,所以或解得0≤a≤2,即实数a的取值范围是.【点睛】本题考查了简易逻辑的判定方法、集合之间的关系、不等式的解法,考查了推理能力与计算能力,属于基础题20、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三种情况讨论,求得函数的单调性,结合极值的概念,即可求解;(Ⅱ)由不等式,转化为当时,不等式恒成立,设,利用导数求得函数的单调性与最值,即可求解.【详解】(Ⅰ)由题意,函数的定义域为,且,当时,令,解得,令,解得或,故在上单调递减,在,上单调递增,所以有一个极值点;当时,令,解得或,令,得,故在,上单调递减,在上单调递增,所以有一个极值点;当时,上单调递增,在上单调递减,所以没有极值点综上所述,当时,有个极值点;当时,没有极值点.(Ⅱ)由,即,可得,即当时,不等式恒成立,设,则设,则因为,所以,所以在上单调递增,所以,所以在上单调递减,在上单调递增,所以,所以所以的取值范围是.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.21、(1);(2).【解析】(1)求出同时掷两颗骰子的基本事件数、及骰子向上的点数相等的基本事件数,应用古典概型的概率求法,求概率即可.(2)列举出两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数的基本事件,应用古典概型的概率求法,求概率即可.【小问1详解】同时掷两颗骰子包括的基本事件共种,掷两颗骰子向上的点数相等包括的基本事件为6种,故所求的概率为;【小问2详解】两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数时,用坐标记为,,,,,,,,,,,,,,,,共包括16个基本事件,故两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数有的概率为.22、(1);(2)2.【解析】(1)根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论