大连市重点中学2026届高一上数学期末达标检测模拟试题含解析_第1页
大连市重点中学2026届高一上数学期末达标检测模拟试题含解析_第2页
大连市重点中学2026届高一上数学期末达标检测模拟试题含解析_第3页
大连市重点中学2026届高一上数学期末达标检测模拟试题含解析_第4页
大连市重点中学2026届高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大连市重点中学2026届高一上数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移个单位,得到的图像对应的解析式为()A. B.C. D.2.下列函数中,最小值是的是()A. B.C. D.3.为了节约水资源,某地区对居民用水实行“阶梯水价”制度:将居民家庭全年用水量(取整数)划分为三档,水价分档递增,其标准如下:阶梯居民家庭全年用水量(立方米)水价(元/立方米)其中水费(元/立方米)水资源费(元/立方米)污水处理费(元/立方米)第一阶梯0-180(含)52.071.571.36第二阶梯181-260(含)74.07第三阶梯260以上96.07如该地区某户家庭全年用水量为300立方米,则其应缴纳的全年综合水费(包括水费、水资源费及污水处理费)合计为元.若该地区某户家庭缴纳的全年综合水费合计为1180元,则此户家庭全年用水量为()A.170立方米 B.200立方米C.220立方米 D.236立方米4.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个5.已知直线,直线,则与之间的距离为()A. B.C. D.6.“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件7.设命题p:∀x∈0,1,x>xA.∀x∈0,1,x<x3C.∀x∈0,1,x≤x38.已知弧长为cm的弧所对的圆心角为,则这条弧所在的扇形面积为()cm2A. B.C. D.9.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为()A. B.C. D.10.的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线,则与间的距离为___________.12.函数的单调增区间为________13.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从__________年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:,)14.已知正数a,b满足,则的最小值为______15.函数在一个周期内的图象如图所示,此函数的解析式为_______________16.两平行直线与之间的距离______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)根据函数单调性的定义,证明在区间上单调递减,在区间上单调递增;(2)令,若对,,都有成立,求实数取值范围18.已函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.19.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.20.已知为第三象限角,且.(1)化简;(2)若,求的值.21.已知函数.(1)求的周期和单调区间;(2)若,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由三角函数的平移变换即可得出答案.【详解】函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得,再将所得的图象向左平移个单位可得故选:B.2、B【解析】应用特殊值及基本不等式依次判断各选项的最小值是否为即可.【详解】A:当,则,,所以,故A不符合;B:由基本不等式得:(当且仅当时取等号),符合;C:当时,,不符合;D:当取负数,,则,,所以,故D不符合;故选:B.3、C【解析】根据用户缴纳的金额判定全年用水量少于260,利用第二档的收费方式计算即可.【详解】若该用户全年用水量为260,则应缴纳元,所以该户家庭的全年用水量少于260,设该户家庭全年用水量为x,则应缴纳元,解得.故选:C4、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键5、D【解析】利用两平行线间的距离公式即可求解.【详解】直线的方程可化为,则与之间的距离故选:D6、A【解析】利用充分条件和必要条件的定义分析判断即可【详解】当时,,当时,或,所以“”是“”的充分非必要条件,故选:A7、D【解析】直接根据全称命题的否定,即可得到结论.【详解】因为命题p:∀x∈0,1,x所以¬p:∃x∈0,1,x故选:D8、C【解析】根据弧长计算出半径,再利用面积公式得到答案.【详解】弧长为cm的弧所对的圆心角为,则故选【点睛】本题考查了扇形面积,求出半径是解题的关键.9、B【解析】根据题意,求得长方体的体对角线,即为该球的直径,再用球的表面积公式即可求得结果.【详解】由已知,该球是长方体的外接球,故,所以长方体的外接球半径,故外接球的表面积为.故选:.【点睛】本题考查长方体的外接球问题,涉及球表面积公式的使用,属综合基础题.10、B【解析】由诱导公式可得,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据平行线间距离直接计算.【详解】由已知可得两直线互相平行,故,故答案为:.12、.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.13、2021【解析】设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×(两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为202114、##【解析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,故,则,当且仅当时,等号成立故答案为:15、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,,,,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,又,,三角函数的解析式是.故答案为:.16、2【解析】根据平行线间距离公式可直接求解.【详解】直线与平行由平行线间距离公式可得故答案为:2【点睛】本题考查了平行线间距离公式的简单应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由单调性定义证明;(2)换元,设,,由(1)求得的范围,然后由二次函数性质求得最大值和最小值,由最大值减去最小值不大于可得的范围【小问1详解】证明:设,,且,则,当时,∴,,∴,∴,即,∴函数在上单调递减当时,∴,,∴,∴,即,∴函数在上单调递增综上,函数在上单调递减,在上单调递增【小问2详解】解:由题意知,令,,由(1)可知函数在上单调递减,在上单调递增,∴,∵函数的对称轴方程为,∴函数在上单调递减,当时,取得最大值,,当时,取得最小值,,所以,,又∵对,,都有恒成立,∴,即,解得,又∵,∴k的取值范围是18、(1);(2),k∈Z.【解析】(1)首先利用三角恒等变换化简函数,根据周期公式求函数周期;(2)代入单调递增区间,求解函数的单调递增区间.【详解】解:(1).所以,f(x)的周期为.(2)由(k∈Z),得(k∈Z).所以,f(x)的单调递增区间是,k∈Z.19、(I);(II).【解析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1),则h(t)=,h′(t)=,在t>1时,h′(t)<0,h(t)递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)另解:令t=ex(t>1),则h(t)==1+,可令k=4t+7(k>11),可得h(t)=1+,由3k+在k>11递增,可得h(t)在k>11递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)【点睛】本题考查函数的奇偶性和单调性的判断和运用,考查函数方程的转化思想,以及构造函数法,运用导数判断单调性,考查化简整理的运算能力,属于中档题.20、(1);(2)﹒【解析】(1)利用三角函数的诱导公式即可化简;(2)根据求出sinα,=-cosα=即可求得﹒【小问1详解】【小问2详解】∵,∴,又为第三象限角,∴,∴21、(1)周期为,增区间为,减区间为;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论