版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CostBenchmarkingforLongDurationEnergyStorageSolutions
2025TechnicalReport
January2026
ACKNOWLEDGMENTS
Page|ii
EPRIpreparedthisreportincollaborationwiththeLDESCouncil.
ThePrincipalInvestigatorswere:G.Booras,J.Marasigan,J.Raade,J.RushkoffandS.Hume.
EPRIacknowledgesthestrongpartnershipandcollaborationoftheLDESCouncilanditsmemberorganizationsinsupportingthisresearcheffort.ThecontributionsofCouncilmembers—throughtheirtechnicalinsights,marketperspectives,andongoing
engagement—wereinstrumentalinshapingthefindingsandensuringthatthe
outcomesreflectreal-worldprioritiesandopportunitiesforlongdurationenergystoragedeployment.
EPRIandtheLDESCouncilrecognizeandvaluethecollectiveeffortofallparticipantswhocontributedknowledge,expertise,andguidance.Theircommitmenttoadvancing
theenergystorageindustrycontinuestodriveprogresstowardamoreresilient,reliable,anddecarbonisedenergysystem.
ABSTRACT
Page|iii
Thisstudypresentstheresultsofacostbenchmarkingstudyforlongdurationenergystorage(LDES)technologiesconductedbyEPRIincollaborationwiththeLDES
Council.Recognizingtheneedtohavehigh-qualitydataonthecostofLDES
technologiestoenablepolicymakersanddatacollectorstosupportthemodeling,
demonstration,andlarge-scaledeploymentofLDESsolutions,theLDESCouncil
issuedasurveytoitstechnologydevelopermemberstocollecthigh-levelperformancemetrics,capitalandoperatingcosts,andtechnologyreadinesslevelsforcommercial-scaleprojectsinbothpower-to-powerandpower-to-heatapplications.
Thecollecteddatawerereviewedandnormalisedtoacommondesignbasisand
locationtoenablemeaningfulcomparisonsacrosstechnologies.Thenamesof
individualtechnologydeveloperswerenotincludedgivenconfidentialityrestrictions.
However,thedataarepresentedinanaggregatedformatwithrelatedtechnologies
includedinfivebroadtechnologycategories,including:IntradayElectrochemical,
IntradayCompressedGas,IntradayPumpedHeat,Multi-Day,andThermalEnergy
Storage.Costdatawerescaledandaggregatedforcontractyears2025and2030,
providinginsightsintoexpectedcostreductionsdrivenbyresearchanddevelopment
advancementsandmanufacturingscale-up.Costdatawerealsoaggregatedtoavoidover-interpretingindividualtechnologyperformance,e.g.,topreserveconfidentialityandcomparability.
NotetoReaders:Toensurecomparabilityandprotectcommerciallysensitive
information,thisstudypresentscostdatainaggregatedrangesbytechnologycategory.Readersseekingmoregranularortechnology-specificinformationformodelingor
planningpurposesareencouragedtocontacttheLDESCouncil,whichcanfacilitateconnectionswithrelevanttechnologydevelopersrepresentedinthisstudy.
EXECUTIVESUMMARY
Thisreportpresentstheresultsofacomprehensivecostbenchmarkingstudyforlongdurationenergystorage(LDES)technologies,conductedbyEPRIincollaborationwiththeLDESCouncil.Thestudyaddressesthegrowingneedforreliable,scalable,andcost-effectiveenergystoragesolutionstosupportgridreliability,decarbonization,andtheincreasingenergydemandsdrivenbydatacentres,electrification,andartificial
intelligence.
StudyOverview
•AstructuredsurveywasissuedtoLDESCounciltechnologydevelopermembers.
•Datacollectedincludedcapitalcosts,operatingandmaintenance(O&M)costs,performancemetrics,andtechnologyreadinesslevels(TRLs).
•Technologiesweregroupedintofivecategories:
−IntradayElectrochemical(e.g.,flowbatteries,sodiumbatteries)
−IntradayCompressedGas(e.g.,advancedcompressedair,liquidair,CO:-basedsystems)
−IntradayPumpedHeatEnergyStorage(power-to-powerconfiguration)
−Multi-Day(100+hroptions,e.g.,fuel-based,reversiblefuelcells,metal-airbatteries,etc.)
−ThermalEnergyStorage(power-to-heatsystemssuchassensibleheatorphase-changematerials)
•Datawerenormalisedtoacommondesignbasisandlocation(U.S.Lower48)toenablemeaningfulcomparisons.
KeyCostData
Thelowandhighrangesfortotalplantcost(TPC)in$/kWhforeachtechnologygroupareplottedinthefollowingfiguresforcurrentcostsin2025andforprojectedcostsin2030.Alltechnologycategoriesshowcostsinunitsofelectricalenergystorage(power-to-powerapplications)exceptforThermalEnergyStorage,whichisshowninunitsofthermalenergystorage(power-to-heatapplication).TPCvaluesexpressedin$/kWh
shouldbeinterpretedinthecontextofdischargedurationandintendedsystem
application,aslongerdurationresourcesinherentlyspreadfixedpower-relatedcostsovermorestoredenergy.
TPC,$/kWh
600
500
400
300
200
100
0
Rangein2025&2030TotalPlantCost,$/kWh
oLow●High
572
358
244
220
2025100MW,10-hr
Intraday
Electrochemical
EnergyStorage
2030100MW,10-hr
Intraday
Electrochemical
EnergyStorage
Figure1.Rangein2025and2030TPCin$/kWhforIntradayElectrochemicalEnergyStoragecategory
NotethattheIntradayElectrochemicaltechnologiesthatmakeupthe2030grouparenotthesameasthosein2025,i.e.,somedevelopersonlyprovided2025costs,someboth2025and2030costs,andsomeonly2030costs.Basedonthesubmittedcostdata,theprojectedTPCcostreductionfrom2025to2030fortheIntraday
ElectrochemicalEnergyStoragecategoryaverages~37%.
TPC,$/kWh
600
500
400
300
200
100
0
Rangein2025&2030TotalPlantCost,$/kWh
oLowoHigh
471
158
445
118
2025100MW,10-hr
Intraday
CompressedGas
EnergyStorage
2030100MW,10-hr
Intraday
CompressedGas
EnergyStorage
Figure2.Rangein2025and2030TPCin$/kWhforIntradayCompressedGasEnergyStoragecategory
Basedonthesubmittedcostdata,theprojectedTPCcostreductionsfrom2025to2030fortheCompressedGasEnergyStoragecategoryrangefrom6-25%.
Rangein2030TotalPlantCost,$/kWh
TPC,$/kWh
600
500
400
300
200
100
0
oLow●High
338
236
2030100MW,10-hr
Intraday
PumpedHeat
EnergyStorage
Figure3.Rangein2030TPCin$/kWhforIntradayPumpedHeatEnergyStoragecategory
Rangein2030TotalPlantCost,$/kWh
TPC,$/kWh
100
90
80
70
60
50
40
30
20
10
0
oLow●High
38
26
203010MW,100-hr
Multi-Day
EnergyStorage
Figure4.Rangein2030TPCin$/kWhforMulti-DayEnergyStoragecategory
TPC,$/kWhth
200
180
160
140
120
100
80
60
40
20
0
Rangein2025&2030TotalPlantCost,$/kWhth
oLow●High
132
82
20
24
202525MWth,20-hr
Thermal
EnergyStorage
203025MWth,20-hr
Thermal
EnergyStorage
Figure5.Rangein2025and2030TPCin$/kWhthforThermalEnergyStoragecategory
Notethatthetechnologiesthatmakeupthe2030grouparenotthesameasthosein2025,i.e.,somedevelopersonlyprovided2025costs,whileothersprovidedboth2025and2030costs.Basedonthesubmittedcostdata,theprojectedTPCcostreductionsfrom2025to2030fortheThermalEnergyStoragecategoryrangefrom16-47%.
Conclusions
•Thetechnologydevelopersactiveintheindustrywhoprovidedcostsforboth
contractyearsexpectsubstantiallylowercostsin2030versus2025.Expectedcostreductionsby2030aredrivenbyongoingwork,improvedperformance,and
economiesofscalefromexpandedmanufacturing.
•TheaggregatedandnormalisedcostdataprovideactionableinsightsforutilitiesandsystemoperatorstoincorporateLDEStechnologiesintoresourceplanningand
capacityexpansionmodels
•Thebenchmarkingmethodologyenablesconsistentcomparisonacrossdiversetechnologiesandsupportsplanning,modeling,andinvestmentdecisions
•DifferencesbetweenLDESCouncildataandotherreferenceshighlighttheneedforharmonizedcostdefinitionsandbroadertechnologycoveragetoallowfair
comparisons
ACRONYMSANDABBREVIATIONS
Abbreviation
Definition
ATB
AnnualTechnologyBaseline
BESS
Batteryenergystoragesystem
BOP
Balance-of-plant
CAPEX
Capitalexpenditure
HTF
Heattransferfluid
LAES
Liquidairenergystorage
LDES
Longdurationenergystorage
LFP
Lithiumironphosphate
MW
Megawattelectric
MWth
Megawattthermal
MWh
Megawatt-hourelectric
MWhth
Megawatt-hourthermal
NLR
NationalLaboratoryoftheRockies
O&M
Operatingandmaintenance
P2H
Power-to-heat
P2P
Power-to-power
PCM
Phase-changematerial
PHES
Pumpedheatenergystorage
RFB
Redoxflowbattery
RTE
Round-tripefficiency
TES
Thermalenergystorage
TIC
Totalinstalledcost
TPC
Totalplantcost
TRL
Technologyreadinesslevel
VRB
Vanadiumredoxflowbattery
CONTENTS
Page|ix
1.Introduction 1
Motivation 1
Approach 2
ActionableLDESInformationforIndustryStakeholders 2
UtilityResourcePlanning 3
2.SurveyDevelopment 5
3.TRLAssessment 6
4.DataCollectionandReview 7
DataCollection 7
DataReview 7
TRLAssessment 7
CostInformation 7
ResourceCharacteristics 8
5.DataAnalysis 9
TechnologyCategorization 9
IntradayElectrochemicalEnergyStorage 9
IntradayCompressedGasEnergyStorage 12
IntradayPumpedHeatEnergyStorage 14
Multi-DayEnergyStorage 16
ThermalEnergyStorage 17
DataNormalisation 20
NormalisingCoststoaCommonDesignBasis 20
NormalisingCoststoaCommonLocation 21
CostDataAggregatedResults 21
IntradayElectrochemicalEnergyStorage 23
Page|x
IntradayCompressedGasEnergyStorage 25
IntradayPumpedHeatEnergyStorage 27
Multi-DayEnergyStorage 29
ThermalEnergyStorage 30
CostReferences 33
6.SummaryandConclusions 35
KeyConclusions 35
Recommendations 36
7.References 37
A.BlankSurvey 38
Instructions,ItemDescriptionsWorksheet 39
Power-to-PowerSurveyWorksheet 41
Power-to-HeatSurveyWorksheet 43
B.TRLCriteria 45
C.DetailsonScalingCosts 47
LISTOFFIGURES
Page|xi
Figure1.Rangein2025and2030TPCin$/kWhforIntradayElectrochemical
EnergyStoragecategory v
Figure2.Rangein2025and2030TPCin$/kWhforIntradayCompressedGas
EnergyStoragecategory v
Figure3.Rangein2030TPCin$/kWhforIntradayPumpedHeatEnergy
Storagecategory vi
Figure4.Rangein2030TPCin$/kWhforMulti-DayEnergyStoragecategory vi
Figure5.Rangein2025and2030TPCin$/kWhthforThermalEnergyStorage
category vii
Figure6.SimplifieddiagramofaNaSbatterycell 10
Figure7.DiagramofaVRB 11
Figure8.Rangein2025and2030TPCin$/kWhforIntradayElectrochemical
EnergyStoragecategory 25
Figure9.Rangein2025and2030TPCin$/kWhforIntradayCompressedGas
EnergyStoragecategory 27
Figure10.Rangein2030TPCin$/kWhforIntradayPHEScategory 28
Figure11.Rangein2030TPCin$/kWhforMulti-DayEnergyStoragecategory 30
Figure12.Rangein2025and2030TPCin$/kWhthforThermalEnergyStorage
category 32
LISTOFTABLES
Page|xii
Table1.ResourcecharacteristicsforIntradayElectrochemicalEnergyStorage
technologies 12
Table2.ResourcecharacteristicsforIntradayCompressedGasEnergyStorage
technologies 14
Table3.ResourcecharacteristicsforIntradayPHEStechnologiesinP2P
configuration 16
Table4.ResourcecharacteristicsforMulti-DayEnergyStoragetechnologies 17
Table5.ResourcecharacteristicsforTEStechnologies 20
Table6.Scaledsizesfortechnologycategories 21
Table7.Aggregated2025costdataforIntradayElectrochemicalEnergyStorage
category 24
Table8.Aggregated2030costdataforIntradayElectrochemicalEnergyStorage
category 24
Table9.Aggregated2025costdataforIntradayCompressedGasEnergy
Storagecategory 26
Table10.Aggregated2030costdataforIntradayCompressedGasEnergy
Storagecategory 26
Table11.Aggregated2030costdataforIntradayPHEScategory 28
Table12.Aggregated2030costdataforMulti-DayEnergyStoragecategory 29
Table13.Aggregated2025costdataforTEScategory 31
Table14.Aggregated2030costdataforTEScategory 31
Table15.2025costreferencesforLFPlithium-ionandPSH 34
INTRODUCTION
Page|1
Motivation
Utilities,energycompanies,industrialcompanies,andelectricityconsumershavea
diversesetofpathwaystoachievetheirsystemreliability,energyaffordability,and
decarbonizationgoals.Therapidgrowthofenergyconsumptiondrivenbydatacentres,theuseofartificialintelligence,andthetrendtowardselectrificationisdrivingthesearchfornewsourcesofscalable,dispatchablepowerandheat.Longdurationenergy
storage(LDES)isanenablerfortheseobjectivesandisimportantforcompaniesto
consideraspartofaportfolioofsolutions.LDEScomprisesanarrayofprimarily
developingenergystoragetechnologiesthataspiretobeavailableatlowercoststhanalternativetechnologiesandcapableofprovidingdiverseservicesrequiredtokeepthegridstableandreliableandtheenergyindustrysustainable.LDEScanprovidearangeofenergyservicesincludingelectricalenergy,capacity,resilience,balancingand
reserves,andlow-carbonheat.WhenconsideringLDES,itisimportanttostartwiththedesiredusecaseinmind,thenselectthetechnologythatcanbestprovidetheserviceswhenneeded[1].
LDESiscomplementarytothegrowingfleetofgridenergystorageresourcescurrentlyrepresentedalmostentirelybylithium-ionbatteriesandpumpedstoragehydropower,
whichserveascriticalbenchmarksforevaluatingemergingLDEStechnologies.LDESiscommonlydefinedasatechnologythatstoresenergyandthendispatchesitas
power,heat,orcoolingforextendedperiodsoftime,rangingfrom8hourstodays,
weeks,orseasons.Manyshort-durationenergystoragesystemscanbeoperatedlike
LDESiftheyaredischargedatlowerpowerlevels.However,theymaylackthelow
marginalcapitalcostforenergycapacity(lowcapitalcostperaddedhourofduration)
thatischaracteristicofmanyLDEStechnologytypes.Similarly,LDEScanperform
servicesthatrequireshorterstoragedurationsbutmightcostmoreperkilowattofpowercapacitythanashort-durationsystem.
Itisimportanttoperformathoroughcost-benefitanalysiswhenconsideringthe
selectionofanLDEStechnologytomeetadesiredusecase.TheneedforlongerLDESisgrowing,butthecommercialavailabilityofmanyLDEStechnologiesisstillnascent.Infact,someutilitiesarebeginningtoconsidersimplyprocuringlonger-durationlithium-ionbatterysystemsconfiguredfor8-houroreven12-hourdurations.Lithium-ionbattery
technologyiscapableofperformingthisrole;simplyaddingmorebatterymodulesthatfeedintoanexistinginverterwouldmakeitpossible.However,doubling(ortripling)thedurationoflithium-ionbatterysystemalmostdoubles(ortriples)thecapitalcosts
becausethereislittleeconomyofscaleforaddingenergystoragecapacity(themarginalcostofaddingdurationishigh,unlikemanyLDEStechnologies).LDES
Page|2
technologiesareexpectedtobelowercostatlongerduration,buthowmuchlower?Andifnot,willtheaddedbenefitsofthelongerdurationoutweighthecosts?
Toanswerthesequestions,itiscriticaltohavehigh-qualitydataonthecostofLDES
technologies.However,thepublicavailabilityofLDESdataislimited.Inparticular,moreaccuratedepictionsofcosts,evenatahighlevel,aredifficulttoascertainwithout
informationfromcompaniesthataredevelopingtheLDEStechnologies.
Approach
TogainmoreinsightsintocostdataforrepresentativeLDEStechnologies,theLDESCouncilissuedasurveytoitstechnologydevelopermembersrequestingcurrenthigh-levelperformancemetricsandcapitalandoperatingandmaintenance(O&M)costsfortheirpreferredcommercialprojectsizeinapower-to-power(P2P)orapower-to-heat(P2H)application,dependingonthetechnology.
Inadditiontoperformanceandcostdata,thesurveyrequestedrespondentstoprovidetheirtechnology’scurrenttechnologyreadinesslevel(TRL).Performanceandcostdatawererequestedfortwocontractyearbases–2025and2030–withtheintenttohavetechnologiesatTRL4or5toprovideexpected2030costsandthoseatTRL6and
abovetoprovide2025costs.Theyearforthecostestimateisthedateaprojectwouldbecontracted,e.g.,“noticetoproceed”or“finalinvestmentdecision.”Theexpected
2030costsarereportedin2025dollars.
Datacollectedfromthesurveywerereviewedandanalysed,andtheresultshavebeenaggregatedandsummarisedinthisreport.Thenamesofindividualtechnology
developersarenotincludedgivenconfidentialityrestrictions.However,thedatais
presentedinanaggregatedformatwithrelatedtechnologiesincludedinseveralbroadtechnologycategories.Thisapproachstillresultsinactionableinformationregardingthecurrentandexpectedcost,performance,andmaturityofLDEStechnologies.
ActionableLDESInformationforIndustryStakeholders
UnderstandingtheperformanceandcostmetricsofemergingLDEStechnologiesisvaluabletoawiderangeofstakeholdersincludinginvestors,industrialenergyusers,policymakers,customers,andutilitiesorindependentpowerproducers.Potential
benefitsinclude:
•Investors
−RiskAssessmentandReturnonInvestment:Metricslikeround-tripefficiency(RTE)andcapitalcosthelpinvestorsevaluatethefinancialviabilityandexpectedreturnsofLDESprojects.
Page|3
-TechnologyComparison:Comparisonsacrosstechnologiesassistguidinginvestmenttowardthemostpromisingoptions.
-MarketTiming:Costtrendsandperformanceimprovementssignalwhenatechnologyisreadyforscale-uporcommercialization.
-DueDiligence:Detailedperformanceandcostdatasupportmoreinformeddecisionsduringmergers,acquisitions,orventurefunding.
•IndustrialEnergyUsers(includingdatacentres)
-EnergyResilience:High-efficiency,cost-effectiveLDEScanensureuninterruptedpowerduringoutagesorpeakdemandperiods.
-CostOptimization:Understandingcapitalandoperatingandmaintenancecostshelpsinbudgetingandreducingenergyexpenses.
-SustainabilityGoals:Performancemetricshelpalignwithcarbonreductiontargetsbyintegratingrenewableswithreliablestorage.
-GridIndependence:CombiningLDESwithon-sitepowergenerationenablesstrategicplanningformicrogridsorbehind-the-meterstoragesolutions.
•Policymakers
-InformedRegulation:Performanceandcostdatasupportthecreationofincentives,subsidies,andstandardsthatpromoteviabletechnologies.
-EnergyPlanning:DetailedLDESinformationhelpsinmodelingfuturegridscenariosandplanningfordecarbonizationpathways.
-PublicSpendingJustification:Transparentmetricsjustifypublicinvestmentsorgrantsinemergingtechnologies.
-EquityandAccess:Costdatacaninformpoliciesthatensureequitableaccesstocleanenergystoragesolutions.
•Utilities
-GridReliability:RTEandoperationalcostshelputilitiesassesshowLDEScansupportgridstability,frequencyregulation,andpeakshaving.
-RateDesign:Costinsightshelputilitiesdesigntariffsthatreflectthevalueofstoragetothegrid.
-TechnologyProcurement:CostandperformanceinformationforLDES
technologiesfacilitatescompetitivebiddingandselectionofstoragetechnologiesbasedonlifecyclecostandperformance.
UtilityResourcePlanning
Electricutilitiesaroundtheworldroutinelyengageinstructured,long-termplanningtoensuretheycanmeetfutureenergydemandinareliable,cost-effective,and
Page|4
sustainablemanner.Thisplanningprocesstypicallyspansa10-to20-yearhorizonandresultsinacomprehensiveutilityresourceplanthatoutlinesprojecteddemandgrowth,resourcerequirements,andrecommendedinvestmentstrategies.
Theutilityresourceplanservesasbothastrategicroadmapforinternaldecision-makingand,inmanyjurisdictions,aregulatoryorpolicysubmission.Ithelpsutilitiesaligninfrastructuredevelopmentwithnationalorregionalenergygoals.
Keyinputstotheplanningprocessinclude:
•Forecastsofelectricitydemandandloadgrowth
•Climateandweathervariability
•Fuelandenergypriceprojections
•Policyandregulatorymandates
•Cost,performance,andavailabilityofgenerationandenergystoragetechnologies
Utilitiesusetheseinputstomodelmultiplefuturescenarios,eachreflectingdifferenteconomic,technological,andpolicyconditions.Theplanningprocessoftenincludesstakeholderengagement,regulatoryconsultation,andpublicinputtoensure
transparencyandalignmentwithbroadersocietalobjectives.
Todate,dataavailabilityformanyemergingLDEStechnologiesisstilllimited,
constrainingresourceplanninganalyses.ThecostsurveydescribedinthisreportcanhelpmitigatethislackofinformationbyprovidingdetaileddataonLDEStechnologies,enablingplannerstoassesstheircompetitivenessandpotentialroleandinclusioninfutureresourceportfolios.
KeyInformationPoint
ThecostsurveydescribedinthisreportprovidessomeofthedatarequiredforsystemplannerstoincludeemergingLDEStechnologiesintheirscenariomodelingandplanningefforts.
Utilities,systemoperators,andmodelersinterestedinlearningmoreaboutspecifictechnologiesincludedinthisstudymayreachouttotheLDESCounciltobeconnectedwithrelevanttechnologydevelopers.
Page|5
1.SURVEYDEVELOPMENT
EPRIandtheLDESCouncildevelopedthesurveythattheLDESCouncilsenttoasubsetofitstechnologymembers.Thesurveywasdesignedspecificallytobe
informativeaboutcostandhigh-leveloperationaldata.Thesurveyrequestedthefollowingdata:
•CapitalandO&MCosts:Costsbrokendownbycategoryandsubsystem,includingcontingency,storagesystem,chargesystem,dischargesystem,balance-of-plant
(BOP),sitework,controls,andfixedandvariableO&Mcosts
•ProjectSizeandDuration:Informationforacommercial-scalesizeoftheenergystoragesystem.Ifflexible,respondentswereaskedtousea10-hourduration
resourceanda100MWdischargecapacity.
•ResourceCharacteristics:Lifetime,RTE,storagecapacityinMWh,charginganddischargingcapacitiesinMW,chargeanddischargedurations,degradationrate,
anddepthofdischarge
•TRL:Developer’sassessmentofthecurrentTRLoftheirtechnology
Thefullsurveys,includinginstructionsanditemdescriptions,areincludedinAppendix
A
.
Page|6
2.TRLASSESSMENT
Basedontheassumptionthatorganizationsmayusedifferentcriteriaforassessing
TRL,EPRIindependentlyassessedtheTRLforthetechnologiesintheLDESCouncil’ssurveyscopebasedonadocumentedsetofcriteriathatwasoriginallydevelopedbytheNationalAeronauticsandSpaceAdministrationandadaptedbyEPRItoassessthereadinessandtrackthedevelopmentofenergystoragetechnologies[2].EPRI’sTRLcriteriaareincludedinAppendix
B
andconsistsofthefollowingnineTRLs:
1.TRL-1BasicPrinciplesObservedandReported
2.TRL-2FormulationoftheApplication
3.TRL-3Proof-of-Concept
4.TRL-4ComponentValidationinaLaboratoryEnvironment
5.TRL-5ComponentValidation–PertinentTechnologyComponentsareValidatedinaRelevantEnvironment
6.TRL-6ProcessDevelopmentUnit–ConsistsofPrototypeComponentsinaRelevantEnvironment
7.TRL-7PilotPlant–Integrated,FullyFunctionalPrototypethatIncorporatesAlloftheFeaturesoftheAnticipatedFull-ScaleDeploymentinanOperationalEnvironment
8.TRL-8CommercialPilotPlant–DeploymentoftheTechnologyinItsFinalFormandUnderExpectedConditions
9.TRL-9CommercialPlant–NormalCommercialService
Page|7
3.DATACOLLECTIONANDREVIEW
DataCollection
TheLDESCouncilwasresponsibleforsendingthesurveytoandcollectingcompletedsurveysfromitsmembers.ThecompletedsurveyswereprovidedtoEPRI,limitedtotheteamsupportingthestudy,toreviewandanalysethesubmitteddata.
DataReview
Allthesurveyswerereviewedtoensurethesubmitteddataalignedwithvaluesthathavealreadybeencollectedindependentlythroughothermeansorwithcommon
industrypractice,e.g.,applicationofcostcontingencies.
TRLAssessment
EPRIcomparedthedevelopers’reportedTRLwithitsownindependentassessments.DuringtheinterviewsbetweentheLDESCouncil,EPRI,andthesurveyrespondents,
differencesinTRLassessmentsbyEPRIandrespondentswerediscussed,whereeachsharedthesupportingdocumentationorbasesthatwereusedtodeterminetheTRL.Inallcases,therespondentsagreedtouseEPRI’sTRLcriteriaandassessment,sothatalltechnologieswereevaluatedonaconsistentbasis,improvingcomparabilityacross
differenttechnologies.
CostInformation
CapitalCosts
Itisimportanttoclearlydefinewhatisincludedinthereportedcapitalcostofagiven
LDEStechnologyusedinthisreport.ThisstudyfollowstheUnitedStatesDepartmentofEnergy’sNationalEnergyTechnologyLaboratory(NETL)definitionsforcapitalcosts[3].Thesurveyreportscapitalcostsusingtotalplantcosts(TPC)orcapitalexpenditure
(CAPEX).TPCcomprisesthecostofdeliveredprocessequipment,on-sitefacilities,
andinfrastructurethatsupporttheplant(e.g.,shops,offices,labs,roads),andthedirectandindirectlabourrequiredforitsconstructionand/orinstallationplusthecostof
engineering,procurement,andconstructionservicesandcontingencies.Respondentswererequestedtoprovidecostsusingthecoststructureprovided,i.e.,TPC,
contingency,andsixsubsystemcosts.Inmanycases,therespondentsprovidedcostsusingthesuggestedbreakdown,buttherewereafewcaseswhereonlyaTPCvalueorafewsubsystemcostswereprovided,limitingthecapitalcostanalysistoaTPCbasis.Contingencieswerealsoreviewedtoensurethatthevaluesprovidedwere
Page|8
commensuratewitheachtechnologydeveloper’scertaintylevelofthecostestimateorlevelofcommercialprojectdesigndefinition.AACEcostestimatingguidelines[4]weresharedwiththedevelopersfortypicalcontingencyvalues.
Respondentswereaskedtoprovidethecertaintylevel(i.e.,low,medium,orhigh)of
theircostestimate.Themajorityofthecostestimateswereprov
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026天津大学出版社有限责任公司招聘4人参考考试题库附答案解析
- 2026青海西宁市应急管理局招聘安全生产实操考评员备考考试试题附答案解析
- 攀枝花市公安局仁和区分局2026年上半年公开招聘警务辅助人员(10人)备考考试试题附答案解析
- 2026浙江嘉兴海宁智能制造岗位专场招聘参考考试题库附答案解析
- 2026浙江宁波市海曙区人才科技发展有限公司招聘政府机关单位编外人员1人备考考试试题附答案解析
- 2026年度济南市长清区事业单位公开招聘初级综合类岗位人员参考考试试题附答案解析
- 新技术和新项目准入制度考核试题及答案
- 广西辅警考试题库及答案
- 2025年安徽省淮南市辅警招聘考试试题库带答案
- 宁夏电力公司校园招聘模拟试题附带答案详解参考答案详解
- 江苏省连云港市2024-2025学年第一学期期末调研考试高二历史试题
- 文化馆安全生产制度
- (2025年)保安员(初级)证考试题库及答案
- 2026年浙江省军士转业岗位履职能力考点练习题及答案
- 安全设备设施安装、使用、检验、维修、改造、验收、报废管理制度
- 2026届四川省成都市2023级高三一诊英语试题(附答案和音频)
- 《煤矿安全规程(2025)》防治水部分解读课件
- 2025至2030中国新癸酸缩水甘油酯行业项目调研及市场前景预测评估报告
- JJF 2333-2025恒温金属浴校准规范
- 员工自互检培训
- (2025年)司法考试法理学历年真题及答案
评论
0/150
提交评论