版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市高新一中、交大附中、师大附中2026届数学高二上期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线被圆截得的弦长为4,则的最大值是()A. B.C.1 D.22.已知动点的坐标满足方程,则的轨迹方程是()A. B.C. D.3.已知命题p:,,则命题p的否定为()A., B.,C, D.,4.已知命题p:,,则()A., B.,C., D.,5.在等差数列中,若,则()A.5 B.6C.7 D.86.下列双曲线中,以为一个焦点,以为一个顶点的双曲线方程是()A. B.C. D.7.对数的创始人约翰·奈皮尔(JohnNapier,1550-1617)是苏格兰数学家.直到18世纪,瑞士数学家欧拉发现了指数与对数的互逆关系,人们才认识到指数与对数之间的天然关系对数发现前夕,随着科技的发展,天文学家做了很多的观察,需要进行很多计算,特别是大数的连乘,需要花费很长时间.基于这种需求,1594年,奈皮尔运用了独创的方法构造出对数方法.现在随着科学技术的需要,一些幂的值用数位表示,譬如,所以的数位为4.那么的数位是()(注)A.6 B.7C.606 D.6078.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个9.设α,β是两个不同的平面,m,n是两条不重合的直线,下列命题中为真命题的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么10.已知,若,则的取值范围为()A. B.C. D.11.一盒子里有黑色、红色、绿色的球各一个,现从中选出一个球.事件选出的球是红色,事件选出的球是绿色.则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件12.已知点P是双曲线上的动点,过原点O的直线l与双曲线分别相交于M、N两点,则的最小值为()A.4 B.3C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.设,为实数,已知经过点的椭圆与双曲线有相同的焦点,则___________.14.函数的图象在点处的切线的方程是______.15.如图,某海轮以的速度航行,若海轮在点测得海面上油井在南偏东,向北航行后到达点,测得油井在南偏东,海轮改为沿北偏东的航向再行驶到达点,则,间的距离是________16.已知数列满足,,则_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,为其前n项和,若,(1)求数列的首项和公差;(2)求的最小值.18.(12分)如图,在四棱锥中,平面平面,,,是边长为的等边三角形,是以为斜边的等腰直角三角形,点为线段的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.19.(12分)如图,已知三棱柱的侧棱与底面垂直,,,和分别是和的中点,点在直线上,且.(1)证明:无论取何值,总有;(2)是否存在点,使得平面与平面所成角为?若存在,试确定点的位置;若不存在,请说明理由.20.(12分)某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:间隔时间x/分101112131415等候人数y/人232526292831调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.(1)若选取的是中间4组数据,求y关于x的线性回归方程=x+,并判断此方程是否是“恰当回归方程”.(2)假设该起点站等候人数为24人,请你根据(1)中的结论预测车辆发车间隔多少时间合适?附:对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线=x+的斜率和截距的最小二乘估计分别为21.(12分)已知函数.(1)若,求函数的单调区间;(2)设存在两个极值点,且,若,求证:.22.(10分)△的内角A,B,C的对边分别为a,b,c.已知(1)求角B的大小;(2)若△不为钝角三角形,且,,求△的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据弦长求得的关系式,结合基本不等式求得的最大值.【详解】圆的圆心为,半径为,所以直线过圆心,即,由于为正数,所以,当且仅当时,等号成立.故选:A2、C【解析】此方程表示点到点的距离与到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线的右支,,的轨迹方程是,故选C.3、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.4、C【解析】由全称命题的否定:将任意改存在并否定结论,即可写出原命题p的否定.【详解】由全称命题的否定为特称命题,∴是“,”.故选:C.5、B【解析】由得出.【详解】由可得,故选:B6、C【解析】设出双曲线方程,根据题意,求得,即可选择.【详解】因为双曲线的一个焦点是,故可设双曲线方程为,且;又为一个顶点,故可得,解得,则双曲线方程为:.故选:.7、D【解析】根据已知条件,设,则,求出t的范围,即可判断其数位.【详解】设,则,则,则,,的数位是607.故选:D.8、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.9、C【解析】AB.利用两平面的位置关系判断;CD.利用面面平行的判定定理判断;【详解】A.如果,,n∥β,那么α,β相交或平行;故错误;B.如果,,,那么α,β垂直,故错误;C.如果m∥n,,则,又,那么α∥β,故C正确;D错误,故选:C10、C【解析】根据题意,由为原点到直线上点的距离的平方,再根据点到直线垂线段最短,即可求得范围.【详解】由,,视为原点到直线上点的距离的平方,根据点到直线垂线段最短,可得,所有的取值范围为,故选:C.11、A【解析】根据事件的关系进行判断即可.【详解】由题意可知,事件与为互斥事件,但事件不是必然事件,所以,事件与事件是互斥事件,不是对立事件.故选:A.【点睛】本题考查事件关系的判断,考查互斥事件和对立事件概率的理解,属于基础题.12、C【解析】根据双曲线的对称性可得为的中点,即可得到,再根据双曲线的性质计算可得;【详解】解:根据双曲线的对称性可知为的中点,所以,又在上,所以,当且仅当在双曲线的顶点时取等号,所以故选:C二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由点P在椭圆上,可得的值,再根据椭圆与双曲线有相同的焦点即可求解.【详解】解:因为点在椭圆上,所以,解得,所以椭圆方程为,又椭圆与双曲线有相同的焦点,所以,解得,故答案为:1.14、【解析】求导,求得,,根据直线的点斜式方程求得答案.【详解】因为,,所以切线的斜率,切线方程是,即.故答案为:.15、【解析】根据条件先由正弦定理求出的长,得出,求出的长,由勾股定理可得答案.【详解】海轮向北航行后到达点,则由题意,在中,又则,由正弦定理可得:,即在中,,所以故答案为:16、【解析】由题设可得,应用累加法有,结合已知即可求.【详解】由题设,,所以,又,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)首项为-2,公差为1;(2).【解析】(1)设出等差数列的公差,再结合前n项和公式列式计算作答.(2)由(1)的结论,探求数列的性质即可推理计算作答.【小问1详解】设等差数列首项为,公差为,而为其前n项和,,,于是得:,解得,,所以,.【小问2详解】由(1)知,,,,数列是递增数列,前3项均为非正数,从第4项起为正数,而,于是得的前2项和与前3项和相等并且最小,所以当或时,.18、(1)证明见解析;(2).【解析】(1)取的中点,连接,,证明两两垂直,如图建系,求出的坐标以及平面的一个法向量,证明结合面,即可求证;(2)求出的坐标以及平面的法向量,根据空间向量夹角公式计算即可求解.【小问1详解】如图:取的中点,连接,,因为是边长为等边三角形,是以为斜边的等腰直角三角形,可得,,因为面面,面面,,面,所以平面,因为面,所以,可得两两垂直,分别以所在的直线为轴建立空间直角坐标系,则,,,,,,所以,,,设平面的一个法向量,由,可得,令,则,所以,因为,所以,因为面,所以平面.【小问2详解】,,,设平面的一个法向量,由,令,,,所以,设直线与平面所成角为,则.所以直线与平面所成角的正弦值为.19、(1)证明见解析;(2)不存在,理由见解析.【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算得出,即可得出结论;(2)计算出平面的一个法向量,利用空间向量法可得出关于的方程,即可得出结论.【详解】(1)因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,所以,,则,因此,无论取何值,总有;(2),设平面的法向量为,则,取,则,,所以,平面的一个法向量为,易知平面的一个法向量为,由题意可得,整理可得,,此方程无解,因此,不存在点,使得平面与平面所成的角为.20、(1),是“恰当回归方程”;(2)10分钟较合适.【解析】(1)应用最小二乘法求出回归直线方程,再分别估计、时的值,结合“恰当回归方程”的定义判断是否为“恰当回归方程”.(2)根据(1)所得回归直线方程,将代入求x值即可.【小问1详解】中间4组数据是:间隔时间(分钟)11121314等候人数(人)25262928因为,所以,故,又,所以,当时,,而;当时,,而;所以所求的线性回归方程是“恰当回归方程”;【小问2详解】由(1)知:当时,,所以预测车辆发车间隔时间10分钟较合适.21、(1)在和上单调递增,在上单调递减;(2)证明见解析【解析】(1)首先求出函数的导函数,再令、,分别求出函数的单调区间;(2)先求出,构造函数,求出函数的导数,得到函数的单调区间,求出函数的最小值,从而证明结论【小问1详解】解:当时,,所以,令,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船舶起重设备使用安全宣教
- 2026年重庆市资阳地区单招职业倾向性测试模拟测试卷附答案
- 2026年重庆护理职业学院单招职测考试题库及答案1套
- 2026年重庆理工职业学院单招职业倾向性考试模拟测试卷及答案1套
- 2026年重庆科技大学单招职业倾向性测试题库及答案1套
- 2026年重庆航天职业技术学院单招综合素质考试题库及答案1套
- 2026年铜仁幼儿师范高等专科学校单招职业适应性测试题库及答案1套
- 2026年长垣烹饪职业技术学院单招职业倾向性测试题库附答案
- 2026年长春护理单招试题附答案
- 2026年阜新高等专科学校单招职业技能测试题库附答案
- 2025年大学医学(人体解剖学)试题及答案
- 2026年中央网信办直属事业单位-国家计算机网络应急技术处理协调中心校园招聘备考题库参考答案详解
- DB32/T+5311-2025+港口与道路工程+固化土施工技术规范
- 2025年河南农业大学辅导员考试真题
- 2025郑州餐饮行业市场深度调研及发展前景与投资前景研究报告
- 早产的临床诊断与治疗指南(2025年)
- 2025年黑龙江省大庆市检察官逐级遴选笔试题目及答案
- JBP计划培训课件
- 宠物民宿创业规划
- 小学生家长教育心得分享
- 2025年银行柜员年终工作总结(6篇)
评论
0/150
提交评论