版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区百色市广西田阳高中2026届高二数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.2.关于的不等式的解集为()A. B.C.或 D.3.椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为A. B.C. D.4.已知直线,若圆C的圆心在轴上,且圆C与直线都相切,求圆C的半径()A. B.C.或 D.5.执行如图所示的程序框图,则输出S的值是()A. B.C. D.6.在等差数列中,若,,则公差d=()A. B.C.3 D.-37.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或8.若圆与圆相切,则实数a的值为()A.或0 B.0C. D.或9.设等比数列,有下列四个命题:①{a②是等比数列;③是等比数列;④lgan其中正确命题的个数是()A.1 B.2C.3 D.410.已知双曲线,过点作直线l,若l与该双曲线只有一个公共点,这样的直线条数为()A.1 B.2C.3 D.411.抛物线的准线方程为,则实数的值为()A. B.C. D.12.直线l的方向向量为,且l过点,则点到l的距离为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.已知平面直角坐标系中各顶点的坐标分别为,,,则其“欧拉线”的方程为___________.14.抛物线的焦点坐标是______.15.已知点,点是直线上的动点,则的最小值是_____________16.已知过点作抛物线的两条切线,切点分别为A、B,直线经过抛物线C的焦点F,则___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p为“方程没有实数根”,命题q为“”.(1)若p为真命题,求m的取值范围;(2)若p和q有且只有一个为真命题,求m的取值范围.18.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产.某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,19.(12分)已知椭圆的离心率为,椭圆的上顶点到焦点的距离为.(1)求椭圆的方程;(2)若直线与椭圆相交于、两点(、不是左、右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点.20.(12分)设等差数列的前项和为,已知,.(1)求数列的通项公式;(2)求数列的前项和.21.(12分)设p:;q:关于x的方程无实根.(1)若q为真命题,求实数k的取值范围;(2)若是假命题,且是真命题,求实数k的取值范围.22.(10分)设{an}是公比为正数的等比数列a1=2,a3=a2+4(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.2、C【解析】求出不等式对应方程的根,结合不等式和二次函数的关系,即可得到结果.【详解】不等式对应方程的两根为,因为,故可得,根据二次不等式以及二次函数的关系可得不等式的解集为或.故选:C.【点睛】本题考查含参二次不等式的求解,属基础题.3、B【解析】根据题意,椭圆的标准方程为,其中则,则有|F1F2|=2,若a=3,则|PF1|+|PF2|=2a=6,又由|PF1|=4,则|PF2|=6-|PF1|=2,则cos∠F1PF2==.故选B4、C【解析】设出圆心坐标,利用圆心到直线的距离相等列方程,求得圆心坐标并求得圆的半径.【详解】设圆心坐标为,则或,所以圆的半径为或.故选:C5、C【解析】按照程序框图的流程进行计算.【详解】,故输出S的值为.故选:C6、C【解析】由等差数列的通项公式计算【详解】因为,,所以.故选:C【点睛】本题考查等差数列的通项公式,利用等差数列通项公式可得,7、C【解析】点关于轴的对称点为,由反射光线的性质,可设反射光线所在直线的方程为:,再利用直线与圆相切,可知圆心到直线的距离等于半径,由此即可求出结果【详解】点关于轴的对称点为,设反射光线所在直线的方程为:,化为因为反射光线与圆相切,所以圆心到直线的距离,可得,所以或故选:C8、D【解析】根据给定条件求出两圆圆心距,再借助两圆相切的充要条件列式计算作答.【详解】圆的圆心,半径,圆的圆心,半径,而,即点不可能在圆内,则两圆必外切,于是得,即,解得,所以实数a的值为或.故选:D9、C【解析】根据等比数列的性质对四个命题逐一分析,由此确定正确命题的个数.【详解】是等比数列可得(为定值)①为常数,故①正确②,故②正确③为常数,故③正确④不一定为常数,故④错误故选C.【点睛】本小题主要考查等比数列的性质,属于基础题.10、D【解析】先确定双曲线的右顶点,再分垂直轴、与轴不垂直两种情况讨论,当与轴不垂直时,可设直线方程为,联立直线与抛物线方程,消元整理,再分、两种情况讨论,即可得解【详解】解:根据双曲线方程可知右顶点为,使与有且只有一个公共点情况为:①当垂直轴时,此时过点的直线方程为,与双曲线只有一个公共点,②当与轴不垂直时,可设直线方程为联立方程可得当即时,方程只有一个根,此时直线与双曲线只有一个公共点,当时,,整理可得即故选:D11、B【解析】由题得,解方程即得解.【详解】解:抛物线的准线方程为,所以.故选:B12、C【解析】利用向量投影和勾股定理即可计算.【详解】∵,∴又,∴在方向上的投影,∴P到l距离故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意知是直角三角形,即可写出垂心、外心的坐标,进而可得“欧拉线”的方程.【详解】由题设知:是直角三角形,则垂心为直角顶点,外心为斜边的中点,∴“欧拉线”的方程为.故答案为:.14、【解析】将抛物线的方程化为标准形式,即可求解出焦点坐标.【详解】因为抛物线方程,焦点坐标为,且,所以焦点坐标为,故答案为:.15、【解析】直接根据点到直线的距离公式即可求出【详解】线段最短时,与直线垂直,所以,的最小值即为点到直线的距离,则.故答案为:.16、64【解析】用字母进行一般化研究,先求出切点弦方程,再联立化简,最后代入数据计算【详解】设,点处的切线方程为联立,得由,得即,解得所以点处的切线方程为,整理得同理,点处的切线方程为设为两切线的交点,则所以在直线上即直线AB的方程为又直线AB经过焦点所以,即联立得所以所以本题中所以故答案为:64【点睛】结论点睛:过点作抛物线的两条切线,切点弦的方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)方程无根,利用根的判别式小于0求出m的取值范围;(2)和有且只有一个为真命题,分两种情况进行求解,最终求出结果.【小问1详解】由方程没有实数根,得,解得:.所以m的取值范围为.【小问2详解】和有且只有一个为真命题,分为下列两种情况:①当真且假时,且,得;②当假且真时,且,得.所以,的取值范围为.18、(1)(2)80件/小时【解析】(1)先利用等差数列的通项公式和频率分布直方图各矩形的面积之和为1求出各组频率,再利用频率分布直方图求中位数;(2)先求出、,利用最小二乘法求出回归直线方程,再进行预测其生产速度.【小问1详解】解:设前4组的频率分别为,,,,公差为,由频率分布直方图,得,即,解得,则,,所以中位数为.【小问2详解】解:由题意,得,,由所给公式,得,,所以回归直线方程为,则当时,,即估计该车间某位有16年工龄的工人的生产速度为80件/小时.19、(1);(2)证明见解析.【解析】(1)根据已知条件求出、、的值,可得出椭圆的标准方程;(2)设、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出关于、所满足的等式,然后化简直线的方程,即可求得直线所过定点的坐标.【小问1详解】解:椭圆上顶点到焦点距离,又椭圆离心率为,故,,因此,椭圆方程为.【小问2详解】解:设、,由题意可知且,椭圆的右顶点为,则,,因为以为直径的圆过椭圆的右顶点,所以有,则,即,联立,,即,①由韦达定理得,,所以,,化简得,即或,均满足①式.当时,直线,恒过定点,舍去;当时,直线,恒过定点.综上所述,直线过定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点,常利用直线的点斜式方程或截距式来证明.20、(1)(2)【解析】(1)根据已知条件求得等差数列的首项和公差,由此求得.(2)利用裂项求和法求得.【小问1详解】设等差数列的公差为,则,解得,.∴.【小问2详解】由(1)知.∴.∴.21、(1);(2).【解析】(1)根据命题的真假,结合一元二次方程无实根,列出的不等式,即可求得结果;(2)求得命题为真对应的的范围,结合命题一个为真命题一个为假命题,即可列出的不等式组,求解即可.【小问1详解】若q为真命题,则,解得,即实数k的取值范围为.【小问2详解】若p为真,,解得,由是假命题,且是真命题,得:p、q两命题一真一假,当p真q假时,或,得,当p假q真时,,此时无解.综上的取值范围为.22、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式(Ⅱ)由{bn}是首项为1,公差为2的等差数列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn解:(Ⅰ)∵设{an}
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山钢集团财务制度
- 村后勤财务制度
- 信息管理财务制度
- 民办非盈利机构财务制度
- 农村信用合作社会计基本制度
- 公路甲方单位安全事故隐患排查治理制度
- 养老院老人康复设施维修人员培训制度
- 书店活动展览方案策划(3篇)
- 安保打桩施工方案(3篇)
- 施工现场施工防台风灾害威胁制度
- 牛津版八年级英语知识点总结
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库及完整答案详解
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库含答案详解
- 国际话语体系构建与策略分析课题申报书
- 南京医科大学2026年招聘人事代理人员备考题库及1套参考答案详解
- 2026年深圳市离婚协议书规范范本
- 2026年教育平台资源输出协议
- 【《四旋翼飞行器坐标系及相互转换关系分析综述》1000字】
- 2026浙江金华市婺城区城市发展控股集团有限公司招聘59人笔试参考题库及答案解析
- 静脉补液课件
- 广东深圳市盐田高级中学2024~2025学年高一上册1月期末考试化学试题 附答案
评论
0/150
提交评论