版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常德市重点中学2026届高二数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.原点到直线的距离的最大值为()A. B.C. D.2.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.33.已知点是点在坐标平面内的射影,则点的坐标为()A. B.C. D.4.已知函数,则的值为()A. B.C.0 D.15.已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④ B.②③C.①② D.③④6.直线与直线的位置关系是()A.相交但不垂直 B.平行C.重合 D.垂直7.直线的倾斜角大小为()A. B.C. D.8.已知方程表示焦点在轴上的椭圆,则实数的取值范围是()A. B.C. D.9.已知圆柱的底面半径是1,高是2,那么该圆柱的侧面积是()A.2 B.C. D.10.在等差数列中,已知,则数列的前9项和为()A. B.13C.45 D.11711.数列,,,,,中,有序实数对是()A. B.C. D.12.设为双曲线与椭圆的公共的左右焦点,它们在第一象限内交于点是以线段为底边的等腰三角形,若椭圆的离心率范围为,则双曲线的离心率取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,SD是球O的直径,A、B、C是球O表面上的三个不同的点,,当三棱锥的底面是边长为3的正三角形时,则球O的半径为______.14.某人有楼房一栋,室内面积共计,拟分割成两类房间作为旅游客房,大房间每间面积为,可住游客4名,每名游客每天的住宿费100元;小房间每间面积为,可住游客2名,每名游客每天的住宿费150元;装修大房间每间需要3万元,装修小房间每间需要2万元.如果他只能筹款25万元用于装修,且假定游客能住满客房,则该人一天能获得的住宿费的最大值为___________元.15.莱昂哈德·欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线.后来人们称这条直线为该三角形的欧拉线.已知的三个顶点坐标分别是,,,则的垂心坐标为______,的欧拉线方程为______16.已知点和,圆,当圆C与线段没有公共点时,则实数m的取值范围为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四边形是某半圆柱的轴截面(过上下底面圆心连线的截面),线段是该半圆柱的一条母线,点为线的中点(1)证明:;(2)若,且点到平面的距离为1,求线段的长18.(12分)在等差数列中,已知公差,前项和(其中)(1)求;(2)求和:19.(12分)已知椭圆的一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.20.(12分)已知函数(1)求单调增区间;(2)当时,恒成立,求实数的取值范围.21.(12分)已知命题:方程有实数解,命题:,.(1)若是真命题,求实数的取值范围;(2)若为假命题,且为真命题,求实数的取值范围.22.(10分)在如图所示的多面体中,且,,,且,,且,平面,(1)求证:;(2)求平面与平面夹角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出直线过的定点,当时,原点到直线距离最大,则可求出原点到直线距离的最大值;【详解】因为可化为,所以直线过直线与直线交点,联立可得所以直线过定点,当时,原点到直线距离最大,最大距离即为,此时最大值为,故选:C.2、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.3、D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D4、B【解析】对函数求导,然后将代入导数中可得结果.【详解】,则,则,故选:B5、B【解析】结合椭圆、双曲线、抛物线的图像,分别对①②③④分析m、n的正负,即可得到答案.【详解】对于①:由双曲线的图像可知:;由抛物线的图像可知:同号,矛盾.故①错误;对于②:由双曲线的图像可知:;由抛物线的图像可知:异号,符合要求.故②成立;对于③:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,符合要求.故③成立;对于④:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,矛盾.故④错误;故选:B6、C【解析】把直线化简后即可判断.【详解】直线可化为,所以直线与直线的位置关系是重合.故选:C7、B【解析】将直线方程变为斜截式,根据斜率与倾斜角关系可直接求解.【详解】由直线可得,所以,设倾斜角为,则因为所以故选:B8、D【解析】根据已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】因为方程表示焦点在轴上的椭圆,则,解得.故选:D.9、D【解析】由圆柱的侧面积公式直接可得.【详解】故选:D10、C【解析】根据给定的条件利用等差数列的性质计算作答【详解】在等差数列中,因,所以.故选:C11、A【解析】根据数列的概念,找到其中的规律即可求解.【详解】由数列,,,,,可知,,,,,则,解得,故有序实数对是,故选:12、A【解析】设椭圆的标准方程为,根据椭圆和双曲线的定义可得到两图形离心率之间的关系,再根据椭圆的离心率范围可得双曲线的离心率取值范围.【详解】设椭圆的标准方程为,,则有已知,两式相减得,即,,因为,解得故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由三棱锥是正三棱锥,利用正弦定理得出三角形外接圆的半径,进而求出,再由余弦定理得出球O的半径.【详解】因为,所以平面,三棱锥是正三棱锥,设为三角形外接圆的圆心,则在上,连接,,由得出,所以,在中,,即,解得,则球O的半径为.故答案为:14、3600【解析】先设分割大房间为间,小房间为间,收益为元,列出约束条件,再根据约束条件画出可行域,设,再利用的几何意义求最值,只需求出直线过可行域内的整数点时,从而得到值即可【详解】解:设装修大房间间,小房间间,收益为万元,则,目标函数,由,解得画出可行域,得到目标函数过点时,有最大值,故应隔出大房间3间和小房间8间,每天能获得最大的房租收益最大,且为3600元故答案为:360015、①.##(0,1.5)②.【解析】由高线联立可得垂心,由垂心与重心可得欧拉线方程.【详解】由,可知边上的高所在的直线为,又,因此边上的高所在的直线的斜率为,所以边上的高所在的直线为:,即,所以,所以的垂心坐标为,由重心坐标公式可得的重心坐标为,所以的欧拉线方程为:,化简得.故答案为:;16、【解析】当点和都在圆的内部时,结合点与圆的位置关系得出实数m的取值范围,再由圆心到直线的距离大于半径得出实数m的取值范围.【详解】当点和都在圆的内部时,,解得或直线的方程为,即圆心到直线的距离为,当圆心到直线的距离大于半径时,,且.综上,实数m的取值范围为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)先证明,,利用判定定理证明平面,从而得到;(2)设,利用等体积法,由由,解出a.【详解】(1)证明:由题意可知平面,平面∴∵所对为半圆直径∴∴和是平面内两条相交直线∴平面平面∴(2)设,因为,且所以,设,在等腰直角三角形中,取BC的中点E,连结AE,则,取BC1的中点为P,连结DP,∵,∴,又为的中点,∴,∴,即的高为∴,∵,且∴平面,∵平面,且即到平面的距离为1,而由,即解得:,即.【点睛】立体几何解答题(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离).如果求体积,常用的方法有:(1)直接法;(2)等体积法;(3)补形法;(4)向量法.18、(1)12(2)18【解析】(1)根据已知的,利用等差数列的通项公式和前n项和公式即可列式求解;(2)由第(1)问中求解出的的通项公式,要求前12项绝对值的和,可以发现,该数列前6项为正项,后6项为负项,因此在算和的时候,后6项和可以取原通项公式的相反数即可计算,即为,然后再加上前6项和,即为要求的前12项绝对值的和.【小问1详解】由题意可得,在等差数列中,已知公差,前项和所以,解之得,所以n=12【小问2详解】由(1)可知数列{an}的通项公式为,所以即19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的一个顶点为,即.由,解得.∴椭圆C的标准方程是;(Ⅱ)由题可知点,设直线AP的斜率为k,由题意知,直线BP的斜率为,设,,直线AP的方程为,即.联立方程组消去y得.∵P,A为直线AP与椭圆C的交点,∴,即.把换成,得.∴,解得,当时,直线BP的方程为,经验证与椭圆C相切,不符合题意;当时,直线BP的方程为,符合题意.∴直线AP得方程为.【点睛】关键点点睛:两条直线关于直线对称,两直线的倾斜角互补,斜率互为相反数.20、(1)单调增区间为;(2).【解析】(1)求导由求解.(2)将时,恒成立,转化为时,恒成立,令用导数法由求解即可.【详解】(1)因为函数所以令,解得,所以单调增区间为.(2)因为时,恒成立,所以时,恒成立,令则令因为时,恒成立,所以在单调递减.当时,在单调递减,故符合要求;当时,单调递减,故存在使得则当时单调递增,不符合要求;当时,单调递减,故存在使得则当时单调递增,不符合要求.综上.【点睛】方法点睛:恒(能)成立问题的解法:若在区间D上有最值,则(1)恒成立:;;(2)能成立:;.若能分离常数,即将问题转化为:(或),则(1)恒成立:;;(2)能成立:;;21、(1)或;(2)【解析】(1)由方程有实数根则,可求出实数的取值范围.(2)为真命题,即从而得出的取值范围,由(1)可得出为假命题时实数的取值范围.即可得出答案.【详解】解:(1)方程有实数解得,,解之得或;(2)为假命题,则,为真命题时,,,则故.故为假命题且为真命题时,.【点睛】本题考查命题为真时求参数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年产后恢复期营养补充与饮食调整考核题
- 2026年交通安全法规知识考试试题
- 2026年注册会计师考试模拟题财务分析专场
- 2026年法律硕士联考刑法案例分析题库
- 2026年企业网络安全评估的渗透测试技术详解题
- 2026年英语教师资格认证笔试模拟题及答案解析
- 2026年程序设计进阶Python语言编程技巧与实战题目
- 2026年农业种植技术及病虫害防治专业试题
- 2026年民航业乘务员应急处置能力考试
- 2026年社会心理学与人际关系处理题库
- JCT 2126.1-2023 水泥制品工艺技术规程 第1部分:混凝土和钢筋混凝土排水管 (正式版)
- 高中地理选择性必修二知识点
- 航天禁(限)用工艺目录(2021版)-发文稿(公开)
- GB/T 4937.34-2024半导体器件机械和气候试验方法第34部分:功率循环
- 人教版小学数学一年级下册全册同步练习含答案
- 加油站防投毒应急处理预案
- 闭合导线计算(自动计算表)附带注释及教程
- 项目1 变压器的运行与应用《电机与电气控制技术》教学课件
- 网店运营中职PPT完整全套教学课件
- 北师大版八年级数学下册课件【全册】
- 关于提高护士输液时PDA的扫描率的品管圈PPT
评论
0/150
提交评论