内蒙古呼市二中2026届高一上数学期末复习检测模拟试题含解析_第1页
内蒙古呼市二中2026届高一上数学期末复习检测模拟试题含解析_第2页
内蒙古呼市二中2026届高一上数学期末复习检测模拟试题含解析_第3页
内蒙古呼市二中2026届高一上数学期末复习检测模拟试题含解析_第4页
内蒙古呼市二中2026届高一上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼市二中2026届高一上数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2C.若a>b,ab<0,则1a>1b D.若a2.函数的图象形如汉字“囧”,故称其为“囧函数”下列命题:①“囧函数”的值域为R;②“囧函数”在上单调递增;③“囧函数”的图象关于轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线至少有一个交点.正确命题的个数为A1 B.2C.3 D.43.设全集,集合,,则=()A. B.{2,5}C.{2,4} D.{4,6}4.若角的终边和单位圆的交点坐标为,则()A. B.C. D.5.函数y=的单调递减区间是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)6.若,是第二象限的角,则的值等于()A. B.7C. D.-77.若,则错误的是A. B.C. D.8.已知角的终边经过点P,则()A. B.C. D.9.设平面向量,则A. B.C. D.10.下列关于向量的叙述中正确的是()A.单位向量都相等B.若,,则C.已知非零向量,,若,则D.若,且,则二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=cos的图象向右平移个单位长度,得到函数的图象,则函数的解析式为_______,函数的值域是________12.若,则_____________.13.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______14.已知,则____________15.已知函数,则的值等于______16.函数在上存在零点,则实数a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象关于直线对称,若实数满足时,的最小值为1(1)求的解析式;(2)将函数的图象向左平移个单位后,得到的图象,求的单调递减区间18.已知(1)求;(2)若,求.19.2021年新冠肺炎疫情仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”、“拉姆达”、“奥密克戎”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.某科研机构对某变异毒株在一特定环境下进行观测,每隔单位时间进行一次记录,用表示经过单位时间的个数,用表示此变异毒株的数量,单位为万个,得到如下观测数据:123456(万个)1050250若该变异毒株的数量(单位:万个)与经过个单位时间的关系有两个函数模型与可供选择.(1)判断哪个函数模型更合适,并求出该模型的解析式;(2)求至少经过多少个单位时间该病毒的数量不少于1亿个.(参考数据:)20.2020年12月26日,我国首座跨海公铁两用桥、世界最长跨海峡公铁两用大桥——平潭海峡公铁两用大桥全面通车.这是中国第一座真正意义上的公铁两用跨海大桥,是连接福州城区和平潭综合实验区的快速通道,远期规划可延长到,对促进两岸经贸合作和文化交流等具有重要意义.在一般情况下,大桥上的车流速度(单位:千米/时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,将造成堵塞,此时车流速度为;当车流密度不超过辆/千米时,车流速度为千米/时,研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)可以达到最大?并求出最大值.21.已知函数是奇函数,且.(1)求函数的解析式,并判定函数在区间上的单调性(无需证明);(2)已知函数且,已知在的最大值为2,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据不等式的性质或通过举反例,对四个选项进行分析【详解】A.若a>b,当c=0时,ac2=bB.若ac>bc,当c<0时,则C.因为ab<0,将a>b两边同除以ab,则1a>1D.若a2>b2且ab>0,当a<0b<0时,则a<b故选:C2、B【解析】根据“囧函数”的定义结合反比例函数的性质即可判断①,根据复合函数的单调性即可②,根据奇偶性的定义即可判断③,根据零点的定义及反比例函数的性质即可判断④,数形结合即可判断⑤.【详解】解:由题设可知函数的函数值不会取到0,故命题①是错误的;当时,函数是单调递增函数,故“囧函数”在上单调递减,因此命题②是错误的;函数的定义域为,因为,所以函数是偶函数,因此其图象关于轴对称,命题③是真命题;因当时函数恒不为零,即没有零点,故命题④是错误的;作出的大致图象,如图,在四个象限都有图象,故直线与函数的图象至少有一个交点,因此命题⑤也是真命题综上命题③⑤是正确的,其它都是错误的.故选:B3、D【解析】由补集、交集的定义,运算即可得解.【详解】因为,,所以,又,所以.故选:D.4、C【解析】直接利用三角函数的定义可得.【详解】因为角的终边和单位圆的交点坐标为,所以由三角函数定义可得:.故选:C5、A【解析】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,再结合二次函数的性质可得函数t的增区间【详解】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,由二次函数的性质可得函数t的增区间为(-∞,1),所以函数的单调递减区间为(-∞,1).故答案为A【点睛】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.6、B【解析】先由同角三角函数关系式求出,再利用两角差的正切公式即可求解.【详解】因为,是第二象限的角,所以,所以.所以.故选:B7、D【解析】对于,由,则,故正确;对于,,故正确;对于,,故正确;对于,,故错误故选D8、B【解析】根据三角函数的定义计算,即可求得答案.【详解】角终边过点,,,故选:B.9、A【解析】∵∴故选A;【考点】:此题重点考察向量加减、数乘的坐标运算;【突破】:准确应用向量的坐标运算公式是解题的关键;10、C【解析】A选项:单位向量方向不一定相同,故A错误;B选项:当时,与不一定共线,故B错误;C选项:两边平方可得,故C正确;D选项:举特殊向量可知D错误.【详解】A选项:因为单位向量既有大小又有方向,但是单位向量方向不一定相同,故A错误;B选项:当时,,,但与不一定共线,故B错误;C选项:对两边平方得,,所以,故C正确;D选项:比如:,,,所以,,所以,但,故D错误.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】由题意利用函数的图象变换规律求得的解析式,可得的解析式,再根据余弦函数的值域,二次函数的性质,求得的值域【详解】函数的图象向右平移个单位长度,得到函数的图象,函数,,故当时,取得最大值为;当时,取得最小值为,故的值域为,,故答案为:;,12、【解析】平方得13、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:14、##0.8【解析】利用同角三角函数的基本关系,将弦化切再代入求值【详解】解:,则,故答案为:15、2【解析】由分段函数可得,从而可得出答案.【详解】解:由,得.故答案为:2.16、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),【解析】(1)利用已知条件和,可以求出函数的周期,利用是对称轴和,可以求解出的值,从而完成解析式的求解;(2)先写出函数经过平移以后得到的函数解析式,然后再求解的递减区间即可完成求解.【小问1详解】由时,,知,∴,∵的图象关于直线对称,∴,,∵,∴,∴【小问2详解】由题意知:由,,∴,,∴的单调递减区间是,18、(1)(2)【解析】(1)利用诱导公式可得答案;(2)利用诱导公式得到,再根据的范围和平方关系可得答案.小问1详解】.【小问2详解】,若,则,所以.19、(1)选择函数更合适,解析式为(2)11个单位【解析】(1)将,和,分别代入两种模型求解解析式,再根据时的值估计即可;(2)根据题意,进而结合对数运算求解即可.【小问1详解】若选,将,和,代入得,解得得将代入,,不符合题意若选,将,和,代入得,解得得将代入得,符合题意综上:所以选择函数更合适,解析式为【小问2详解】解:设至少需要个单位时间,则,即两边取对数:因为,所以的最小值为11至少经过11个单位时间不少于1亿个20、(1)(2)车流密度为110辆/千米时,车流量最大,最大值为6050辆/时【解析】(1)根据题意,当时,设,进而待定系数得,故;(2)结合(1)得,再根据二次函数模型求最值即可.【小问1详解】解:当时,设则,解得:所以【小问2详解】解:由(1)得,当时,当时,,∴当时,的最大值为∴车流密度为110辆/千米时,车流量最大,最大值为6050辆/时21、(1);函数在区间上单调递减,在上单调递增(2)或【解析】(1)根据奇函数的性质及,即可得到方程组,求出、的值,即可得到函数解析式,再根据对勾函数的性质判断即可;(2)分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论