2026届重庆綦江中学七校联考高一上数学期末质量检测模拟试题含解析_第1页
2026届重庆綦江中学七校联考高一上数学期末质量检测模拟试题含解析_第2页
2026届重庆綦江中学七校联考高一上数学期末质量检测模拟试题含解析_第3页
2026届重庆綦江中学七校联考高一上数学期末质量检测模拟试题含解析_第4页
2026届重庆綦江中学七校联考高一上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届重庆綦江中学七校联考高一上数学期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若圆上有且只有两个点到直线的距离等于1,则半径r的取值范围是A.(4,6) B.[4,6]C.(4,5) D.(4,5]2.已知点,点在轴上且到两点的距离相等,则点的坐标为A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)3.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.244.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.5.若且,则函数的图象一定过点()A. B.C. D.6.函数的部分图象大致为()A. B.C. D.7.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内8.若幂函数f(x)=xa图象过点(3,9),设,,t=-loga3,则m,n,t的大小关系是()A. B.C. D.9.已知为钝角,且,则()A. B.C. D.10.若,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某池塘里原有一块浮萍,浮萍蔓延后的面积(单位:平方米)与时间(单位:月)的关系式为(且)图象如图所示.则下列结论:①浮萍蔓延每个月增长的面积都相同;②浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的;③浮萍蔓延每个月增长率相同,都是;④浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少.其中正确结论的序号是_____12.已知角的终边经过点,则的值是______.13.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________14.已知函数(且)在上单调递减,且关于的方程恰有两个不相等的实数解,则的取值范围是_____15.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.16.已知上的奇函数是增函数,若,则的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的单调区间;(2)求函数在区间上的值域18.已知圆,直线,点在直线上,过点作圆的切线,切点分别为.(Ⅰ)若,求点的坐标;(Ⅱ)求证:经过三点圆必过定点,并求出所有定点的坐标.19.如图,已知点,是以为底边的等腰三角形,点在直线:上(1)求边上的高所在直线的方程;(2)求的面积20.已知向量为不共线向量,若向量与共线求k的值21.已知,向量,.(1)当实数x为何值时,与垂直.(2)若,求在上的投影.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由圆,可得圆心的坐标为圆心到直线的距离为:由得所以的取值范围是故答案选点睛:本题的关键是理解“圆上有且只有两个点到直线的距离等于1”,将其转化为点到直线的距离,结合题意计算求得结果2、D【解析】设点,根据点到两点距离相等,列出方程,即可求解.【详解】根据题意,可设点,因为点到两点的距离相等,可得,即,解得,所以整理得点的坐标为.故选:D.3、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A4、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D5、C【解析】令求出定点的横坐标,即得解.【详解】解:令.当时,,所以函数的图象过点.故选:C.6、A【解析】由奇偶性定义判断对称性,再根据解析式判断、上的符号,即可确定大致图象.【详解】由题设,且定义域为R,即为奇函数,排除C,D;当时恒成立;,故当时,当时;所以,时,时,排除B;故选:A.7、B【解析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【点睛】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明8、D【解析】由幂函数的图象过点(3,9)求出a的值,再比较m、n、t的大小【详解】幂函数f(x)=xa图象过点(3,9),∴3a=9,a=2;,∴m>n>t故选D【点睛】本题考查了幂函数的图象与性质的应用问题,是基础题9、C【解析】先求出,再利用和角的余弦公式计算求解.【详解】∵为钝角,且,∴,∴故选:C【点睛】本题主要考查同角的平方关系,考查和角的余弦公式的应用,意在考查学生对这些知识的理解掌握水平.10、D【解析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为,把已知条件代入运算,求得结果.【详解】,,故选D.【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】由,可求得的值,可得出,计算出萍蔓延月至月份增长的面积和月至月份增长的面积,可判断①的正误;计算出浮萍蔓延个月后的面积和浮萍蔓延个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【详解】由已知可得,则.对于①,浮萍蔓延月至月份增长的面积为(平方米),浮萍蔓延月至月份增长的面积为(平方米),①错;对于②,浮萍蔓延个月后的面积为(平方米),浮萍蔓延个月后的面积为(平方米),所以,浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的,②对;对于③,浮萍蔓延第至个月的增长率为,所以,浮萍蔓延每个月增长率相同,都是,③错;对于④,浮萍蔓延到平方米所经过的时间、蔓延到平方米所经过的时间的和蔓延到平方米的时间分别为、、,则,,,所以,,所以,浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少,④对.故答案为:②④.12、##【解析】根据三角函数定义得到,,进而得到答案.【详解】角的终边经过点,,,.故答案为:.13、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:214、【解析】利用函数是减函数,根据对数的图象和性质判断出的大致范围,再根据为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出的范围【详解】函数(且),在上单调递减,则:;解得,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当即时,联立,则,解得或1(舍去),当时由图象可知,符合条件,综上:的取值范围为.故答案为【点睛】本题考查函数的单调性和方程的零点,对于分段函数在定义域内是减函数,除了每一段都是减函数以外,还要注意右段在左段的下方,经常会被忽略,是一个易错点;复杂方程的解通常转化为函数的零点,或两函数的交点,体现了数学结合思想,属于难题.15、【解析】由图可知,16、【解析】先通过函数为奇函数将原式变形,进而根据函数为增函数求得答案.【详解】因为函数为奇函数,所以,而函数在R上为增函数,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)增区间为;减区间为(2)【解析】(1)利用正弦型函数的单调性直接求即可.(2)整体代换后利用正弦函数的性质求值域.【小问1详解】令,有,令,有,可得函数的增区间为;减区间为;【小问2详解】当时,,,有,故函数在区间上的值域为18、(1)点的坐标为或(2)见解析,过的圆必过定点和【解析】(1)设,由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆,根据点P在直线上得到,代入上式可求出,进而得到定点解析:(Ⅰ)设,由题可知,即,解得:,故所求点的坐标为或.(2)设的中点为,过三点的圆是以为直径的圆,设,则又∵圆又∵代入(1)式,得:整理得:无论取何值时,该圆都经过的交点或综上所述,过的圆必过定点和点睛:这个题目考查的是直线和圆的位置关系;一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值19、解:(Ⅰ)x-y-1=0;(Ⅱ)2【解析】(1)由题意,求得直线的斜率,从而得到,利用直线的点斜式方程,即可求解直线的方程;(2)由,求得,利用两点间的距离公式和三角形的面积公式,即可求得三角形的面积.试题解析:(Ⅰ)由题意可知,为的中点,∴,且,∴所在直线方程为,即.(Ⅱ)由得∴∴,∴∴20、或【解析】由与共线存在实数使,再根据平面向量的基本定理构造一个关于的方程,解方程即可得到k的值.【详解】,或【点睛】本题主要考查的是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论