山东省邹平县黄山中学2026届数学高三上期末达标检测模拟试题含解析_第1页
山东省邹平县黄山中学2026届数学高三上期末达标检测模拟试题含解析_第2页
山东省邹平县黄山中学2026届数学高三上期末达标检测模拟试题含解析_第3页
山东省邹平县黄山中学2026届数学高三上期末达标检测模拟试题含解析_第4页
山东省邹平县黄山中学2026届数学高三上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省邹平县黄山中学2026届数学高三上期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36 B.21 C.12 D.62.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为()A.58厘米 B.63厘米 C.69厘米 D.76厘米3.已知集合A={x|x<1},B={x|},则A. B.C. D.4.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i5.在函数:①;②;③;④中,最小正周期为的所有函数为()A.①②③ B.①③④ C.②④ D.①③6.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.7.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或8.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.9.已知是的共轭复数,则()A. B. C. D.10.已知复数z满足,则在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.执行程序框图,则输出的数值为()A. B. C. D.12.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设复数满足,其中是虚数单位,若是的共轭复数,则____________.14.已知,满足约束条件则的最小值为__________.15.若,则的展开式中含的项的系数为_______.16.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数(其中),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.18.(12分)已知数列满足,,,且.(1)求证:数列为等比数列,并求出数列的通项公式;(2)设,求数列的前项和.19.(12分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.20.(12分)设,,其中.(1)当时,求的值;(2)对,证明:恒为定值.21.(12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的平均数和众数;(2)将表示为的函数;(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.22.(10分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.2、B【解析】

由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.3、A【解析】∵集合∴∵集合∴,故选A4、B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.5、A【解析】逐一考查所给的函数:,该函数为偶函数,周期;将函数图象x轴下方的图象向上翻折即可得到的图象,该函数的周期为;函数的最小正周期为;函数的最小正周期为;综上可得最小正周期为的所有函数为①②③.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.6、B【解析】

根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得,,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.7、C【解析】

由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.8、B【解析】

根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.9、A【解析】

先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【详解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故选:A.【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.10、A【解析】

设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.11、C【解析】

由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.12、D【解析】

将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由于,则.14、【解析】

画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.15、【解析】

首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.16、-1【解析】

由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)求导得到,解得答案.(2)变形得到,令函数,求导得到函数单调区间得到,,得到证明.【详解】(1),,解得.(2)得,变形得,令函数,,令解得,当时,时.函数在上单调递增,在上单调递减,,而函数在区间上单调递增,,,即,即,恒成立.【点睛】本题考查了根据切线求参数,证明不等式,意在考查学生的计算能力和转化能力,综合应用能力.18、(1)证明见解析;(2)【解析】

(1)根据题目所给递推关系式得到,由此证得数列为等比数列,并求得其通项公式.然后利用累加法求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和【详解】(1)已知,则,且,则为以3为首相,3为公比的等比数列,所以,.(2)由(1)得:,,①,②①-②可得,则即.【点睛】本小题主要考查根据递推关系式证明等比数列,考查累加法求数列的通项公式,考查错位相减求和法,属于中档题.19、(1)见解析(2)【解析】

(1)根据题目所给递推关系式得到,由此证得数列为等比数列.(2)由(1)求得数列的通项公式,判断出,由此利用裂项求和法求得数列的前项和.【详解】(1)所以数列是以3为首项,以3为公比的等比数列.(2)由(1)知,∴为常数列,且,∴,∴∴【点睛】本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题.20、(1)1(2)1【解析】分析:(1)当时可得,可得.(2)先得到关系式,累乘可得,从而可得,即为定值.详解:(1)当时,,又,所以.(2)即,由累乘可得,又,所以.即恒为定值1.点睛:本题考查组合数的有关运算,解题时要注意所给出的的定义,并结合组合数公式求解.由于运算量较大,解题时要注意运算的准确性,避免出现错误.21、(1),众数为150;(2);(3)【解析】

(1)由频率直方图分别求出各组距内的频率,由此能求出这个开学季内市场需求量的众数和平均数;(2)由已知条件推导出当时,,当时,,由此能将表示为的函数;(3)利用频率分布直方图能求出利润不少于4800元的概率.【详解】(1)由直方图可估计需求量的众数为150,由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:∴估计需求量的平均数为:(2)当时,当时,∴(3)由(2)知当时,当时,得∴开学季利润不少于4800元的需求量为由频率分布直方图可所求概率【点睛】本题考查频率分布直方图的应用,考查函数解析式的求法,考查概率的估计,是中档

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论