江苏省金陵中学2026届高二上数学期末调研试题含解析_第1页
江苏省金陵中学2026届高二上数学期末调研试题含解析_第2页
江苏省金陵中学2026届高二上数学期末调研试题含解析_第3页
江苏省金陵中学2026届高二上数学期末调研试题含解析_第4页
江苏省金陵中学2026届高二上数学期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省金陵中学2026届高二上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某双曲线的一条渐近方程为,且焦点为,则该双曲线的方程是()A. B.C. D.2.圆与圆的位置关系是()A.内含 B.相交C.外切 D.外离3.经过点且与直线垂直的直线方程为()A. B.C. D.4.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.25.在长方体中,,,分别是棱,的中点,则异面直线,的夹角为()A. B.C. D.6.已知条件,条件表示焦点在x轴上的椭圆,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件7.等差数列中,为其前项和,,则的值为()A.13 B.16C.104 D.2088.已知抛物线的方程为,则此抛物线的准线方程为()A. B.C. D.9.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.404210.椭圆的左右焦点分别为,是上一点,轴,,则椭圆的离心率等于()A. B.C. D.11.若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交12.若双曲线一条渐近线被圆所截得的弦长为,则双曲线的离心率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.无穷数列满足:只要必有,则称为“和谐递进数列”,已知为“和谐递进数列”,且前四项成等比数列,,,则__________,若数列前项和为,则__________.14.已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.15.设等差数列{an}的前n项和为Sn,且S2020>0,S2021<0,则当n=_____________时,Sn最大.16.在正项等比数列中,,,则的公比为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知正方体的棱长为2,,,分别为,,的中点(1)求直线与直线所成角余弦值;(2)求点到平面的距离18.(12分)已知抛物线的焦点为F,点在抛物线上.(1)求抛物线的标准方程;(2)过点的直线交抛物钱C于A,B两点,O为坐标原点,记直线OA,OB的斜率分别,,求证:为定值.19.(12分)已知某学校的初中、高中年级的在校学生人数之比为9:11,该校为了解学生的课下做作业时间,用分层抽样的方法在初中、高中年级的在校学生中共抽取了100名学生,调查了他们课下做作业的时间,并根据调查结果绘制了如下频率分布直方图:(1)在抽取的100名学生中,初中、高中年级各抽取的人数是多少?(2)根据频率分布直方图,估计学生做作业时间的中位数和平均时长(同一组中的数据用该组区间的中点值作代表);(3)另据调查,这100人中做作业时间超过4小时的人中2人来自初中年级,3人来自高中年级,从中任选2人,恰好1人来自初中年级,1人来自高中年级的概率是多少20.(12分)已知数列通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和21.(12分)已知是奇函数.(1)求的值;(2)若,求的值22.(10分)在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数)(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设双曲线的方程为,利用焦点为求出的值即可.【详解】因为双曲线的一条渐近方程为,且焦点为,所以可设双曲线的方程为,则,,所以该双曲线方程为.故选:D.2、C【解析】分别求出两圆的圆心、半径,再求出两圆的圆心距即可判断作答.【详解】圆的圆心,半径,圆,即的圆心,半径,则,即有,所以圆与圆外切.故选:C3、A【解析】根据点斜式求得正确答案.【详解】直线的斜率为,经过点且与直线垂直的直线方程为,即.故选:A4、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.5、C【解析】设出长度,建立空间直角坐标系,根据向量求异面直线所成角即可.【详解】如下图所示,以,,所在直线方向,,轴,建立空间直角坐标系,设,,,,,,所以,,设异面直线,的夹角为,所以,所以,即异面直线,的夹角为.故选:C.6、A【解析】根据条件,求得a的范围,根据充分、必要条件的定义,即可得答案.【详解】因为条件表示焦点在x轴上的椭圆,所以,解得或,所以条件是条件q:或的充分不必要条件.故选:A7、D【解析】利用等差数列下标的性质,结合等差数列前项和公式进行求解即可.【详解】由,所以,故选:D8、A【解析】由抛物线的方程直接写出其准线方程即可.【详解】由抛物线的方程为,则其准线方程为:故选:A9、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.10、A【解析】在中结合已知条件,用焦距2c表示、,再利用椭圆定义计算作答.【详解】令椭圆的半焦距为c,因是上一点,轴,,在中,,,由椭圆定义知,则,所以椭圆的离心率等于.故选:A11、D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,①若,则不存在过点且与直线,都相交的直线;②若与不平行,则直线即为过点且与直线,都相交的直线.(2)若直线与平面平行(如图2),则不存在过点且与直线,都相交的直线.综上所述,过点至多有一条直线与直线,都相交.故选:D.12、A【解析】根据(为弦长,为圆半径,为圆心到直线的距离),求解出的关系式,结合求解出离心率的值.【详解】取的一条渐近线,因为(为弦长,为圆半径,为圆心到直线的距离),其中,所以,所以,所以,所以,所以,故选:A.【点睛】关键点点睛:解答本题的关键是利用几何法表示出圆的半径、圆心到直线的距离、半弦长之间的关系.二、填空题:本题共4小题,每小题5分,共20分。13、①.2②.7578【解析】根据前四项成等比数列及定义可求得,根据新定义得数列是周期数列,从而易求得【详解】∵成等比数列,,,又,为“和谐递进数列”,,,,,…,数列是周期数列,周期为4,故答案为:2,757814、【解析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵∴∴∴.故答案为:.15、1010【解析】先由S2020>0,S2021<0,判断出,,即可得到答案.【详解】等差数列{an}的前n项和为,所以,因为1+2020=1010+1011,所以,所以.,所以,所以当n=1010时,Sn最大.故答案为:1010.16、3【解析】由题设知等比数列公比,根据已知条件及等比数列通项公式列方程求公比即可.【详解】由题设,等比数列公比,且,所以,可得或(舍),故公比为3.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)建立空间直角坐标系,利用向量法由求解;(1)建立空间直角坐标系,先取得平面的一个法向量,,,然后由求解【小问1详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系.则,0,,,2,,,2,,,0,,,0,,,0,,,2,,所以,2,,,2,,则直线与直线所成角的余弦值为;【小问2详解】,2,,,2,,设平面的一个法向量,,,则,取,得,1,,又,点到平面的距离18、(1)(2)证明见解析【解析】(1)将点代入抛物线方程即可求解;(2)当直线AB的斜率存在时,设直线AB的方程为,,将直线方程与抛物线方程联立利用韦达定理即可求出的值;当直线AB的斜率不存在时,由过点即可求出点和点的坐标,即可求出的值.【小问1详解】将点代入得,,∴抛物线的标准方程为.【小问2详解】当直线AB斜率存在时,设直线AB的方程为,,将联立得,,由韦达定理得:,,,当直线AB的斜率不存在时,由直线过点,则,,,,综上所述可知,为定值为.19、(1)初中、高中年级所抽取人数分别为45、55(2)2.375小时,2.4小时(3)【解析】(1)依据分层抽样的原则列方程即可解决;(2)依据频率分布直方图计算学生做作业时间的中位数和平均时长即可;(3)依据古典概型即可求得恰好1人来自初中年级,1人来自高中年级的概率.【小问1详解】设初中、高中年级所抽取人数分别为x、y,由已知可得,解得;【小问2详解】的频率为,的频率为,的频率为因为,,所以中位数在区间上,设为x,则,解得,所以学生做作业时间的中位数为2.375小时;平均时长为小时.故估计学生做作业时间的中位数为2.375小时,平均时长为2.4小时【小问3详解】2人来自初中年级,记为,,3人来自高中年级,记为,,,则从中任选2人,所有可能结果有:,,,,,,,,,共10种,其中恰好1人来自初中年级,1人来自高中年级有6种可能,所以恰好1人来自初中年级,1人来自高中年级的概率为20、(1);;(2).【解析】(1)验证可知数列是以为周期的周期数列,则,;(2)由(1)可求得,利用错位相减法可求得结果.【小问1详解】当时,;当时,;当时,;数列是以为周期的周期数列;,;【小问2详解】由(1)得:,,,,两式作差得:.21、(1);(2)4【解析】(1)根据奇函数的定义,代入化简得,进而可得的值;(2)设,可得,根据奇函数的性质得,进而可得结果.【详解】解:(1)因为是奇函数,所以,即,整理得,又,所以(2)设,因为,所以因为是奇函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论