陕西省汉中市汉台区2026届高二数学第一学期期末联考试题含解析_第1页
陕西省汉中市汉台区2026届高二数学第一学期期末联考试题含解析_第2页
陕西省汉中市汉台区2026届高二数学第一学期期末联考试题含解析_第3页
陕西省汉中市汉台区2026届高二数学第一学期期末联考试题含解析_第4页
陕西省汉中市汉台区2026届高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省汉中市汉台区2026届高二数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行下图所示的程序框图,则输出的值为()A.5 B.6C.7 D.82.为发挥我市“示范性高中”的辐射带动作用,促进教育的均衡发展,共享优质教育资源.现分派我市“示范性高中”的5名教师到,,三所薄弱学校支教,开展送教下乡活动,每所学校至少分派一人,其中教师甲不能到学校,则不同分派方案的种数是()A.150 B.136C.124 D.1003.已知直线与直线垂直,则实数a为()A. B.或C. D.或4.已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A. B.C. D.5.平行六面体中,若,则()A. B.1C. D.6.在空间直角坐标系中,,,若∥,则x的值为()A.3 B.6C.5 D.47.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.8.已知直线l:的倾斜角为,则()A. B.1C. D.-19.圆关于直线对称,则的最小值是()A. B.C. D.10.已知圆的圆心在x轴上,半径为1,且过点,圆:,则圆,的公共弦长为A. B.C. D.211.南宋数学家杨辉在《详解九章算术法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23,则该数列的第31项为()A.336 B.467C.483 D.60112.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式中,各项系数之和为1,则实数_______.(用数字填写答案)14.已知在四面体ABCD中,,,则______15.函数的图象在点处的切线方程为______16.已知双曲线的左、右焦点分别为、,直线与的左、右支分别交于点、(、均在轴上方).若直线、的斜率均为,且四边形的面积为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,底面四边形ABCD为直角梯形,,,,O为BD的中点,,(1)证明:平面ABCD;(2)求平面PAD与平面PBC所成锐二面角的余弦值18.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.19.(12分)已知抛物线C:上一点到焦点F的距离为2(1)求实数p的值;(2)若直线l过C的焦点,与抛物线交于A,B两点,且,求直线l的方程20.(12分)如图所示,椭圆的左、右焦点分别为、,左、右顶点分别为、,为椭圆上一点,连接并延长交椭圆于点,已知椭圆的离心率为,△的周长为8(1)求椭圆的方程;(2)设点的坐标为①当,,成等差数列时,求点的坐标;②若直线、分别与直线交于点、,以为直径的圆是否经过某定点?若经过定点,求出定点坐标;若不经过定点,请说明理由21.(12分)已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,分别为椭圆的上,下顶点,过点且斜率为的直线交椭圆于另一点(异于椭圆的右顶点),交轴于点,直线与直线相交于点.求证:直线的斜率为定值.22.(10分)已知为坐标原点,椭圆的左右焦点分别为,,为椭圆的上顶点,以为圆心且过的圆与直线相切.(1)求椭圆的标准方程;(2)已知直线交椭圆于两点.(ⅰ)若直线的斜率等于,求面积的最大值;(ⅱ)若,点在上,.证明:存在定点,使得为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直接按照程序框图运行即可得正确答案.【详解】当时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,成立,输出的值为,故选:C.2、D【解析】对甲所在组的人数分类讨论即得解.【详解】当甲一个人去一个学校时,有种;当甲所在的学校有两个老师时,有种;当甲所在的学校有三个老师时,有种;所以共有28+48+24=100种.故选:D【点睛】方法点睛:排列组合常用方法有:简单问题直接法、小数问题列举法、相邻问题捆绑法、不相邻问题插空法、至少问题间接法、复杂问题分类法、等概率问题缩倍法.要根据已知条件灵活选择方法求解.3、B【解析】由题可得,即得.【详解】∵直线与直线垂直,∴,解得或.故选:B.4、A【解析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【点睛】本题考查了抛物线的简单几何性质,属于基础题5、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.6、D【解析】依题意可得,即可得到方程组,解得即可;【详解】解:依题意,即,所以,解得故选:D7、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A8、A【解析】由倾斜角求出斜率,列方程即可求出m.【详解】因为直线l的倾斜角为,所以斜率.所以,解得:.故选:A9、C【解析】先求出圆的圆心坐标,根据条件可得直线过圆心,从而可得,然后由,展开利用均值不等式可得答案.【详解】由圆可得标准方程为,因为圆关于直线对称,该直线经过圆心,即,,,当且仅当,即时取等号,故选:C.10、A【解析】根据题意设圆方程为:,代点即可求出,进而求出方程,两圆方程做差即可求得公共弦所在直线方程,再利用垂径定理去求弦长.【详解】设圆的圆心为,则其标准方程为:,将点代入方程,解得,故方程为:,两圆,方程作差得其公共弦所在直线方程为:,圆心到该直线的距离为,因此公共弦长为,故选:A.【点睛】本题综合考查圆的方程及直线与圆,圆与圆位置关系,属于中档题.一般遇见直线与圆相交问题时,常利用垂径定理解决问题.11、B【解析】先由递推关系利用累加法求出通项公式,直接带入即可求得.【详解】根据题意,数列2,3,5,8,12,17,23……满足,,所以该数列的第31项为.故选:B12、C【解析】分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式【详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C【点睛】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键二、填空题:本题共4小题,每小题5分,共20分。13、【解析】通过给二项式中的赋值1求出展开式的各项系数和,即可求出详解】解:令,得各项系数之和为,解得故答案为:14、24【解析】由线段的空间关系有,应用向量数量积的运算律及已知条件即可求.【详解】由题设,可得如下四面体示意图,则,又,,所以.故答案为:2415、【解析】求出、的值,利用点斜式可得出所求切线的方程.【详解】因为,则,所以,,,故所求切线方程为,即.故答案为:.16、【解析】设点关于原点的对称点为点,连接,分析可知四边形为平行四边形,可得出,设,可得出直线的方程为,设点、,将直线的方程与双曲线的方程联立,列出韦达定理,求出的取值范围,利用三角形的面积公式可求得的值,即可求得的值.【详解】解:设点关于原点的对称点为点,连接,如下图所示:在双曲线中,,,则,即点、,因为原点为、的中点,则四边形为平行四边形,所以,且,因为,故、、三点共线,所以,,故,由题意可知,,设,则直线的方程为,设点、,联立,可得,所以,,可得,由韦达定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)连接,利用勾股定理证明,又可证明,根据线面垂直的判定定理证明即可;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面和平面的法向量,由向量的夹角公式求解即可小问1详解】证明:如图,连接,在中,由,可得,因为,,所以,,因为,,,则,故,因为,,,平面,则平面;【小问2详解】解:由(1)可知,,,两两垂直,以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,0,,,2,,,0,,所以,则,,,又,设平面的法向量为,则,令,则,,故,设平面的法向量为,因为,所以,令,则,,故,所以,故平面与平面所成锐二面角的余弦值为18、(1);(2).【解析】(1)先通过降幂公式和辅助角公式将函数化简,进而求出周期;(2)求出的范围,进而结合三角函数的性质求得答案.【小问1详解】,函数最小正周期为.【小问2详解】当时,,,∴,即函数的值域为.19、(1)2(2)或【解析】(1)根据抛物线上的点到焦点与准线的距离相等可得到结果(2)通过联立抛物线与直线方程利用韦达定理求解关系式即可得到结果【小问1详解】抛物线焦点为,准线方程为,因为点到焦点F距离为2,所以,解得【小问2详解】抛物线C的焦点坐标为,当斜率不存在时,可得不满足题意,当斜率存在时,设直线l的方程为联立方程,得,显然,设,,则,所以,解得所以直线l的方程为或20、(1);(2)①或;②过定点、,理由见解析.【解析】(1)由焦点三角形的周长、离心率求椭圆参数,即可得椭圆方程.(2)①由(1)可得,结合椭圆的定义求,即可确定的坐标;②由题设,求直线、的方程,进而求、坐标,即可得为直径的圆的方程,令求横坐标,即可得定点.【小问1详解】由题设,易知:,可得,则,∴椭圆.【小问2详解】①由(1)知:,令,则,∴,解得,故,此时或②由(1),,,∴可令直线:,直线:,∴将代入直线可得:,,则圆心且半径为,∴为直径的圆为,当时,,又,∴,可得或.∴为直径的圆过定点、.【点睛】关键点点睛:第二问,应用点斜式写出直线、的方程,再求、坐标,根据定义求为直径的圆的方程,最后令及在椭圆上求定点.21、(1);(2)证明见解析.【解析】(1)根据条件求出,即可写出椭圆方程;(2)设直线的方程为,联立直线与椭圆,可表示出坐标,继而得出直线的方程,令可得的坐标,即可求出直线的斜率并得出定值.【详解】(1)设椭圆的焦距为,则①,②,又③,由①②③解得,,,所以椭圆的标准方程为.(2)证明:易得,,直线的方程为,因为直线不过点,所以,由,得,所以,从而,,直线的斜率为,故直线的方程为.令,得,直线斜率.所以直线的斜率为定值.【点睛】本题考查椭圆的方程的求法,考查椭圆中的定值问题,属于中档题.22、(1);(2)(ⅰ);(ⅱ).【解析】(1)求出后可得椭圆的标准方程.(2)(ⅰ)设直线的方程为:,,联立直线方程和椭圆方程,利用韦达定理、弦长公式可求面积表达式,利用基本不等式可求面积的最大值.(ⅱ)利用韦达定理化简可得,从而可得的轨迹为圆,故可证存在定点,使得为定值.【详解】(1)由题意知:,,又,则以为圆心且过的圆的半径为,故,所以椭圆的标准方程为:.(2)(ⅰ)设直线的方程为:,将代入得:,所以且,故.又,点到直线的距离,所以,等号当仅当时取,即当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论