北京西城区育才中学2026届高一上数学期末综合测试试题含解析_第1页
北京西城区育才中学2026届高一上数学期末综合测试试题含解析_第2页
北京西城区育才中学2026届高一上数学期末综合测试试题含解析_第3页
北京西城区育才中学2026届高一上数学期末综合测试试题含解析_第4页
北京西城区育才中学2026届高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京西城区育才中学2026届高一上数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2C.若a>b,ab<0,则1a>1b D.若a2.已知集合,,则集合()A. B.C. D.3.已知函数,,则函数的值域为()A B.C. D.4.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.5.素数也叫质数,部分素数可写成“”的形式(是素数),法国数学家马丁•梅森就是研究素数的数学家中成就很高的一位,因此后人将“”形式(是素数)的素数称为梅森素数.2018年底发现的第个梅森素数是,它是目前最大的梅森素数.已知第个梅森素数为,第个梅森素数为,则约等于(参考数据:)()A. B.C. D.6.已知,其中a,b为常数,若,则()A. B.C.10 D.27.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.8.当时,在同一坐标系中,函数与的图象是()A. B.C. D.9.设集合,则()A.{1,3} B.{3,5}C.{5,7} D.{1,7}10.函数在的图象大致为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:12.若“”是“”的充要条件,则实数m的取值是_________13.已知函数在区间是单调递增函数,则实数的取值范围是______14.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元.15.已知角的顶点为坐标原点,始边为轴的正半轴,终边经过点,则___________.16.若函数,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2015年10月,实施了30多年的独生子女政策正式宣告终结,党的十八届五中全会公报宣布在我国全面放开二胎政策.2021年5月31日,中共中央政治局召开会议,会议指出进一步优化生育政策,实施一对夫妻可以生育三个子女政策及配套支持措施,有利于改善我国人口结构,落实积极应对人口老龄化国家战略,保持我国人力资源禀赋优势.某镇2021年1月,2月,3月新生儿的人数分别为52,61,68,当年4月初我们选择新生儿人数和月份之间的下列两个函数关系式①;②(,,,,都是常数),对2021年新生儿人数进行了预测.(1)请你利用所给的1月,2月,3月份数据,求出这两个函数表达式;(2)结果该地在4月,5月,6月份的新生儿人数是74,78,83,你认为哪个函数模型更符合实际?并说明理由.(参考数据:,,,,)18.已知(1)当时,解关于的不等式;(2)当时,解关于的不等式19.已知.(1)若为第四象限角且,求的值;(2)令函数,,求函数的递增区间.20.某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是______小时.21.已知二次函数满足.(1)求b,c的值;(2)若函数是奇函数,当时,,(ⅰ)直接写出的单调递减区间为;(ⅱ)若,求a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据不等式的性质或通过举反例,对四个选项进行分析【详解】A.若a>b,当c=0时,ac2=bB.若ac>bc,当c<0时,则C.因为ab<0,将a>b两边同除以ab,则1a>1D.若a2>b2且ab>0,当a<0b<0时,则a<b故选:C2、B【解析】解不等式求得集合、,由此求得.【详解】,,所以.故选:B3、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B4、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法5、C【解析】根据两数远远大于1,的值约等于,设,运用指数运算法则,把指数式转化对数式,最后求出的值.【详解】因为两数远远大于1,所以的值约等于,设,因此有.故选C【点睛】本题考查了数学估算能力,考查了指数运算性质、指数式转化为对数式,属于基础题.6、A【解析】计算出,结合可求得的值.【详解】因为,所以,若,则.故选:A7、A【解析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【点睛】三角函数求最值或者求值域一定要先将函数化成的形函数.8、B【解析】根据时指数函数与对数函数均为定义域内的增函数即可得答案.【详解】解:因,函数为指数函数,为对数函数,故指数函数与对数函数均为定义域内的增函数,故选:B.9、B【解析】先求出集合B,再求两集合的交集【详解】由,得,解得,所以,因为所以故选:B10、C【解析】当时,,去掉D;当时,,去掉B;因为,所以去A,选C.点睛:(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.12、0【解析】根据充要条件的定义即可求解.【详解】,则{x|}={x|},即.故答案为:0.13、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间单调递增函数,则,故答案为:.14、①.448②.600【解析】销售价格与销售量相乘即得收入,对分段函数,可分段求出最大值,然后比较.【详解】由题意可得(元),即第14天该商品的销售收入为448元.销售收入,,即,.当时,,故当时,y取最大值,,当时,易知,故当时,该商品日销售收入最大,最大值为600元.故答案为:448;600.【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法.15、【解析】利用三角函数定义求出、的值,结合诱导公式可求得所求代数式的值.【详解】由三角函数的定义可得,,因此,.故答案为:.16、##0.5【解析】首先计算,从而得到,即可得到答案.【详解】因为,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)函数②更符合实际,理由见解析【解析】(1)根据三组数据代入求解即可;(2)分别代入(1)问求出的解析式中,检验与实际的差异,即可判断模型更符合实际.【小问1详解】解:(1)由1~3月的新生儿人数,可得对于函数①:得到代入函数②:得到,继而得到,∴【小问2详解】(2)当时,代入函数①,分别得.当时代入函数②,分别得可见函数②更符合实际.18、(1)或;(2)答案不唯一,具体见解析.【解析】(1)先因式分解,进而解出的范围,进而结合指数函数的单调性求得答案;(2)设,然后因式分解,进而讨论a的取值范围求出t的范围,最后结合指数函数的单调性求得答案.【小问1详解】当时,若可得或,即解集为或【小问2详解】令,不等式转化为①当时,不等式解集为;②当时,不等式解集为或;③当时,不等式解集为;④当时,不等式解集为或.综上所述,当时,解集为;当时,解集为或;当时,解集为;当时,解集为或.19、(1);(2).【解析】(1)先利用诱导公式化简,再利用同角三角函数的基本关系求解,代入即得结果;(2)利用两角和的正弦公式的逆应用化简函数,再利用整体代入法,结合范围得到递增区间即可.【详解】解:(1),,,为第四象限角,;(2)由(1)知,故,令,得,又,函数的递增区间为.20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论