广东省汕头市潮南实验学校2026届数学高二上期末学业质量监测模拟试题含解析_第1页
广东省汕头市潮南实验学校2026届数学高二上期末学业质量监测模拟试题含解析_第2页
广东省汕头市潮南实验学校2026届数学高二上期末学业质量监测模拟试题含解析_第3页
广东省汕头市潮南实验学校2026届数学高二上期末学业质量监测模拟试题含解析_第4页
广东省汕头市潮南实验学校2026届数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省汕头市潮南实验学校2026届数学高二上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则等于()A.0 B.2C. D.2.下列问题中是古典概型的是A.种下一粒杨树种子,求其能长成大树的概率B.掷一颗质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一数,求这个数大于1.5概率D.同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率3.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或234.双曲线的光学性质如下:如图1,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线灯”的轴截面是双曲线一部分,如图2,其方程为,分别为其左、右焦点,若从右焦点发出的光线经双曲线上的点A和点B反射后(,A,B在同一直线上),满足,则该双曲线的离心率的平方为()A. B.C. D.5.已知等差数列的公差,若,,则该数列的前项和的最大值为()A.30 B.35C.40 D.456.已知椭圆:的离心率为,则实数()A. B.C. D.7.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定8.已知数列{}满足,则()A. B.C. D.9.已知数列满足,且,为其前n项的和,则()A. B.C. D.10.已知直线的一个方向向量,平面的一个法向量,若,则()A.1 B.C.3 D.11.设,命题“若,则或”的否命题是()A.若,则或B.若,则或C.若,则且D.若,则且12.双曲线的焦距是()A.4 B.C.8 D.二、填空题:本题共4小题,每小题5分,共20分。13.给出下列命题:①若两条不同的直线同时垂直于第三条直线,则这两条直线互相平行;②若两个不同的平面同时垂直于同一条直线,则这两个平面互相平行;③若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行;④若两个不同的平面同时垂直于第三个平面,则这两个平面互相垂直.其中所有正确命题的序号为________.14.如图所示,奥林匹克标志由五个互扣的环圈组成,五环象征五大洲的团结.若从该奥林匹克标志的五个环圈中任取2个,则这2个环圈恰好相交的概率为___________.15.为增强广大师生生态文明意识,大力推进国家森林城市建设创建进程,某班26名同学在一段直线公路一侧植树,每人植一棵(各自挖坑种植),相邻两棵树相距均为10米,在同学们挖坑期间,运到的树苗集中放置在了某一树坑旁边,然后每位同学挖好自己的树坑后,均从各自树坑出发去领取树苗.记26位同学领取树苗往返所走的路程总和为,则的最小值为______米16.已知抛物线的焦点为F,过F的直线l交抛物线C于AB两点,且,则p的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:的焦点到顶点的距离为.(1)求抛物线的方程;(2)已知过点的直线交抛物线于不同的两点,,为坐标原点,设直线,的斜率分别为,,求的值.18.(12分)在平面直角坐标系中,已知双曲线C的焦点为、,实轴长为.(1)求双曲线C的标准方程;(2)过点的直线l与曲线C交于M,N两点,且Q恰好为线段的中点,求直线l的方程.19.(12分)如图,在长方体中,,,是棱的中点(1)求证:;(2)求平面与平面夹角的余弦值;(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由20.(12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的众数、中位数、平均数是多少?21.(12分)已知,(1)当时,求函数的单调递减区间;(2)当时,,求实数a的取值范围22.(10分)如图所示,在三棱柱中,,点在平面ABC上的射影为线段AC的中点D,侧面是边长为2的菱形(1)若△ABC是正三角形,求异面直线与BC所成角的余弦值;(2)当直线与平面所成角的正弦值为时,求线段BD的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.2、D【解析】A、B两项中的基本事件的发生不是等可能的;C项中基本事件的个数是无限多个;D项中基本事件的发生是等可能的,且是有限个.故选D【考点】古典概型的判断3、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.4、D【解析】设,根据题意可得,由双曲线定义得、,进而求出(用表示),然后在中,应用勾股定理得出关系,求得离心率【详解】易知共线,共线,如图,设,则.因为,所以,则,则,又因为,所以,则,在中,,即,所以.故选:D5、D【解析】利用等差数列的性质求出公差以及首项,再由等差数列的前项和公式即可求解.【详解】等差数列,由,有,又,公差,所以,,得,,,∴当或10时,最大,,故选:D6、C【解析】根据题意,先求得的值,代入离心率公式,即可得答案.【详解】因为,所以所以,解得.故选:C7、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D.8、B【解析】先将通项公式化简然后用裂项相消法求解即可.【详解】因为,.故选:B9、B【解析】根据等比数列的前n项和公式即可求解.【详解】由题可知是首项为2,公比为3的等比数列,则.故选:B.10、D【解析】由向量平行充要条件代入解之即可解决.【详解】由,可知,则有,解之得故选:D11、C【解析】根据否命题的定义直接可得.【详解】根据否命题的定义可得命题“若,则或”的否命题是若,则且,故选:C.12、C【解析】根据,先求半焦距,再求焦距即可.【详解】解:由题意可得,,∴,故选:C【点睛】考查求双曲线的焦距,基础题.二、填空题:本题共4小题,每小题5分,共20分。13、②③【解析】由垂直于同一直线的两直线的位置关系判断①;由直线与平面垂直的性质判断②③;由空间中平面与平面的位置关系判断④【详解】①若两条不同的直线垂直于第三条直线,则这两条直线有三种位置关系:平行、相交或异面,故错误;②根据线面垂直的性质知,若两个不同的平面垂直于一条直线,则这两个平面互相平行,故正确;③由线面垂直的性质知:若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行,故正确④若两个不同的平面同时垂直于第三个平面,这两个平面相交或平行,故错误.其中所有正确命题的序号为②③故答案为:②③14、【解析】利用古典概型求概率.【详解】从该奥林匹克标志的五个环圈中任取2个,共有10种情况,其中这2个环圈恰好相交的情况有4种,则所求的概率.故答案为:.15、【解析】根据对称性易知:当树苗放在第13或14个坑,26位同学领取树苗往返所走的路程总和最小,再应用等差数列前n项和的求法求26位同学领取树苗往返所走的路程总和.【详解】将26个同学对应的26个坑分左右各13个坑,∴根据对称性:树苗放在左边13个坑,与放在对称右边的13个坑,26个同学所走的总路程对应相等,∴当树苗放在第13个坑,26位同学领取树苗往返所走的路程总和最小,此时,左边13位同学所走的路程分别为,右边13位同学所走的路程分别为,∴最小值为米.故答案为:.16、3【解析】根据抛物线焦点弦性质求解,或联立l与抛物线方程,表示出,求其最值即可.【详解】已知,设,,,则,∵,所以,,∴,当且仅当m=0时,取..故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由抛物线的几何性质有焦点到顶点的距离为,从而即可求解;(2)当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设的方程为,,,联立抛物线的方程,由韦达定理及两点间的斜率公式即可求解.【小问1详解】解:依题意,,解得,∴抛物线的方程为;【小问2详解】解:当直线的斜率不存在时,直线与抛物线仅有一个交点,不符合题意;当直线的斜率存在时,设的方程为,,,由消去可得,∵直线交抛物线于不同的两点,∴,由韦达定理得,∴.18、(1)(2).【解析】(1)根据条件,结合双曲线定义即可求得双曲线的标准方程.(2)当斜率不存在时,不符合题意;当斜率存在时,设出直线方程,联立双曲线,变形后由中点坐标公式可求得斜率,即可求得直线方程.【详解】(1)根据题意,焦点在轴上,且,所以,双曲线的标准方程为C:.(2)过点的直线l与曲线C交于M,N两点,且Q恰好为线段的中点,当直线斜率不存在时,直线方程为,则由双曲线对称性可知线段的中点在轴上,所以不满足题意;当斜率存在时,设直线方程为,设,则,化简可得,因为有两个交点,所以化简可得恒成立,所以,因为恰好为线段的中点,则,化简可得,所以直线方程为,即.【点睛】本题考查根据双曲线定义求双曲线标准方程,直线与双曲线的位置关系,由中点坐标求直线方程,属于中档题.19、(1)证明见解析(2)(3)存点,【解析】(1)先证明平面,由平面,可证明结论.(2)以分别为轴,建立空间直角坐标系,分别求出平面与平面的法向量,利用向量法求求解即可.(3)设,,则,则由向量法结合条件可得答案.【详解】(1)在长方体中,,又,所以平面又平面,所以.(2)以分别为轴,建立空间直角坐标系因为,,是棱的中点则则为平面的一个法向量.设为平面的一个法向量.,所以,即取,可得所以如图平面与平面夹角为锐角,所以平面与平面夹角的余弦值为.(3)设,,则由(2)平面的一个法向量设与平面所成角为则解得,取所以存在点,满足条件.20、(1)0.25,15;(2)众数为74.5,中位数为72.8,平均分为70.5.【解析】(1)直接利用频率和频数公式求解;(2)利用频率分布直方图的公式求众数、中位数、平均数.【详解】(1)频率=(89.5-79.5)×0.025=0.25;频数=60×0.25=15.(2)[69.5,79.5)一组的频率最大,人数最多,则众数为74.5,左边三个矩形的面积和为0.4,左边四个矩形的面积和为0.7,所以中位数在第4个矩形中,设中位数为,所以中位数为72.8.平均分为44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.521、(1)(2)【解析】(1)求出函数的导函数,再解导函数的不等式,即可求出函数的单调递减区间;(2)依题意可得当时,当时,显然成立,当时只需,参变分离得到,令,,利用导数说明函数的单调性,即可求出参数的取值范围;【小问1详解】解:当时定义域为,所以,令,解得或,令,解得,所以的单调递减区间为;【小问2详解】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论