版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市青山区2026届高一上数学期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若指数函数,则有()A.或 B.C. D.且2.如果直线和同时平行于直线x-2y+3=0,则a,b的值为A.a= B.a=C.a= D.a=3.已知函数,下列结论正确的是()A.函数图像关于对称B.函数在上单调递增C.若,则D.函数的最小值为4.要得到函数的图象,只需将函数的图象()A.向左平移 B.向右平移C.向右平移 D.向左平移5.函数的单调递减区间为A. B.C. D.6.设函数则A.1 B.4C.5 D.97.化简()A. B.C. D.8.命题:“”的否定是()A. B.C. D.9.设,,,则有()A. B.C. D.10.已知圆和圆,则两圆的位置关系为A.内含 B.内切C.相交 D.外切二、填空题:本大题共6小题,每小题5分,共30分。11.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:f(1.6000)≈0.200f(1.5875)≈0.133f(1.5750)≈0.067f(1.5625)≈0.003f(1.5562)≈-0.029f(1.5500)≈-0.060据此数据,可得方程3x-x-4=0的一个近似解为________(精确到0.01)12.函数是定义在R上的奇函数,当时,2,则在R上的解析式为________.13.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,数学家纳皮尔在研究天文学的过程中,为简化计算发明了对数.直到18世纪,才由瑞士数学家欧拉发现了指数与对数的互逆关系,即.现在已知,则__________14.若点在过两点的直线上,则实数的值是________.15.,,则的值为__________.16.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.下面给出了根据我国2012年~2018年水果人均占有量(单位:)和年份代码绘制的散点图(2012年~2018年的年份代码分别为1~7).(1)根据散点图分析与之间的相关关系;(2)根据散点图相应数据计算得,,求关于的线性回归方程.参考公式:.18.如图甲,直角梯形中,,,为的中点,在上,且,现沿把四边形折起得到空间几何体,如图乙.在图乙中求证:(1)平面平面;(2)平面平面.19.已知.(1)求函数的最小正周期及单调递减区间;(2)求函数在区间上的最大值和最小值.20.在直角坐标平面内,角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,分别求sinα、cosα、tanα的值21.已知函数,(其中,,),的相邻两条对称轴间的距离为,且图象上一个最高点的坐标为.(Ⅰ)求的解析式;(Ⅱ)求的单调递减区间;(Ⅲ)当时,求的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据指数函数的概念,由所给解析式,可直接求解.【详解】因为是指数函数,所以,解得.故选:C2、A【解析】由两直线平行时满足的条件,列出关于方程,求出方程的解即可得到的值.【详解】直线和同时平行于直线,,解得,故选A.【点睛】本题主要考查两条直线平行的充要条件,意在考查对基础知识的理解与应用,属于基础题.3、A【解析】本题首先可以去绝对值,将函数变成分段函数,然后根据函数解析式绘出函数图像,最后结合函数图像即可得出答案.【详解】由题意可得:,即可绘出函数图像,如下所示:故对称轴为,A正确;由图像易知,函数在上单调递增,上单调递减,B错误;要使,则,由图象可得或、或,故或或,C错误;当时,函数取最小值,最小值,D错误,故选:A【点睛】本题考查三角函数的相关性质,主要考查三角函数的对称轴、三角函数的单调性以及三角函数的最值,考查分段函数,考查数形结合思想,是难题.4、B【解析】根据左右平移的平移特征(左加右减)即可得解.【详解】解:要得到函数的图象,只需将函数的图象向右平移个单位即可.故选:B.5、A【解析】根据所给的二次函数的二次项系数大于零,得到二次函数的图象是一个开口向上的抛物线,根据对称轴,考查二次函数的变化区间,得到结果【详解】解:函数的二次项的系数大于零,抛物线的开口向上,二次函数的对称轴是,函数的单调递减区间是故选A【点睛】本题考查二次函数的性质,属于基础题6、C【解析】根据题意,由函数的解析式求出与的值,相加即可得答案【详解】根据题意,函数,则,又由,则,则;故选C【点睛】本题考查对数的运算,及函数求值问题,其中解答中熟记对数的运算,以及合理利用分段函数的解析式求解是解答的关键,着重考查了推理与计算能力,属于基础题7、D【解析】利用辅助角公式化简即可.【详解】.故选:D8、C【解析】写出全称命题的否定即可.【详解】“”的否定是:.故选:C.9、C【解析】利用和差公式,二倍角公式等化简,再利用正弦函数的单调性比较大小.【详解】,,,因为函数在上是增函数,,所以由三角函数线知:,,因为,所以,所以故选:C.10、B【解析】由于圆,即
表示以为圆心,半径等于1的圆圆,即,表示以为圆心,半径等于3的圆由于两圆的圆心距等于等于半径之差,故两个圆内切故选B二、填空题:本大题共6小题,每小题5分,共30分。11、56【解析】注意到f(1.5562)=-0.029和f(1.5625)=0.003,显然f(1.5562)f(1.5625)<0,故区间的端点四舍五入可得1.56.12、【解析】由是定义域在上的奇函数,根据奇函数的性质,可推得的解析式.【详解】当时,2,即,设,则,,又为奇函数,,所以在R上的解析式为.故答案为:.13、3【解析】由将对数转化为指数14、【解析】先由直线过两点,求出直线方程,再利用点在直线上,求出的值.【详解】由直线过两点,得,则直线方程为:,得,即,又点在直线上,得,得.故答案为:【点睛】本题考查了已知两点求直线的方程,直线方程的应用,属于容易题.15、#0.3【解析】利用“1”的代换,构造齐次式方程,再代入求解.【详解】,故答案为:16、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)与之间是正线性相关关系(2)【解析】(1)根据散点图当由小变大时,也由小变大可判断为正线性相关关系.(2)由图中数据求出,代入样本中心点求出,即可求出关于的线性回归方程.【详解】(1)由散点图可以看出,点大致分布在某一直线的附近,且当由小变大时,也由小变大,从而与之间是正线性相关关系;(2)由题中数据可得,,从而,,从而所求关于的线性回归方程为.【点睛】本题考查了线性回归方程的求法以及变量之间的关系,属于基础题.18、(1)证明见解析(2)证明见解析【解析】(1)证明出平面,平面,利用面面垂直的判定定理可证得结论成立;(2)证明出平面,可得出平面,利用面面垂直的判定定理可证得结论成立.【小问1详解】证明:翻折前,,翻折后,则有,,因为平面,平面,平面,因为平面,平面,平面,因为,因此,平面平面.【小问2详解】证明:翻折前,在梯形中,,,则,,则,翻折后,对应地,,,因为,所以,平面,,则平面,平面,因此,平面平面.19、(1)最小正周期,单调递减区间为;(2)最小值为0;最大值为3.【解析】(1)将函数化为,可得最小正周期为,将作为一个整体,代入正弦函数的递减区间可得结果.(2)由,得,结合正弦函数的图象可得所求最值试题解析:(1)∴函数的最小正周期由,,得,,∴函数的单调递减区间为(2)∵,∴∴,∴当,即时,取得最小值为0;当,即时,取得最大值为3.20、【解析】由题意利用任意角的三角函数的定义,求得sinα、cosα、tanα的值【详解】解:角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,∴x=1,y=-2,r=|OA|=3,∴sinα==-、cosα==
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年麻醉科常见并发症处理试题及答案解析
- 节段箱梁安装体外预应力施工安全技术保证措施
- 初中英语八年级上册 Module 7 A famous story 基于主题意义探究的听说读写综合教学方案
- 视频行为模式识别-第1篇
- 农产品质量安全检测规范指南
- 宁夏2026年小学音乐学科素养评估方案试卷
- 施工现场环境保护与节能措施
- 注塑车间管理流程标准
- 视频拍摄脚本模版
- 围绕A10学生信息安全意识培养的活动方案
- 2025年秋季散学典礼校长讲话:以四马精神赴新程携温暖期许启寒假
- 2026贵州省黔晟国有资产经营有限责任公司面向社会招聘中层管理人员2人备考考试试题及答案解析
- 大中专高铁乘务专业英语教学课件
- 吉林大学《电磁场与电磁波》2021-2022学年期末试卷
- 鲜花 高清钢琴谱五线谱
- 安全生产标准化持续改进方案
- CJT511-2017 铸铁检查井盖
- 2024年高考语文考前专题训练:现代文阅读Ⅱ(散文)(解析版)
- 第六节暂准进出口货物课件
- 中医外科乳房疾病诊疗规范诊疗指南2023版
- 压实沥青混合料密度 表干法 自动计算
评论
0/150
提交评论