版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省洛阳市孟津县第二高级中学高一上数学期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若过两点的直线的斜率为1,则等于()A. B.C. D.2..已知集合,集合,则()A. B.C. D.3.已知,若,则x的取值范围为()A. B.C. D.4.已知全集U={1,2,3,4,5,6},集合A={2,3,5,6},集合B={1,3,4,6},则集合A∩(∁UB)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6}5.已知扇形周长为40,当扇形的面积最大时,扇形的圆心角为()A. B.C.3 D.26.已知集合,则()A. B.C. D.7.设,且,则的最小值是()A. B.8C. D.168.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.9.已知,且,则的最小值为()A.3 B.4C.5 D.610.已知函数的定义域为,且满足对任意,有,则函数()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是_______12.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.13.高三年级的一次模拟考试中,经统计某校重点班30名学生的数学成绩均在[100,150](单位:分)内,根据统计的数据制作出频率分布直方图如右图所示,则图中的实数a=__________,若以各组数据的中间数值代表这组数据的平均水平,估算该班的数学成绩平均值为__________14.如图,矩形中,,,与交于点,过点作,垂足为,则______.15.函数的单调递增区间为_____________16.写出一个值域为,在区间上单调递增的函数______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设直线与相交于一点.(1)求点的坐标;(2)求经过点,且垂直于直线的直线的方程.18.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.19.为了印刷服务上一个新台阶,学校打印社花费5万元购进了一套先进印刷设备,该设备每年的管理费是0.45万元,使用年时,总的维修费用为万元,问:(1)设年平均费用为y万元,写出y关于x的表达式;(年平均费用=)(2)这套设备最多使用多少年报废合适?(即使用多少年的年平均费用最少)20.若函数在定义域内存在实数使成立,则称函数有“漂移点”.(1)函数是否有漂移点?请说明理由;(2)证明函数在上有漂移点;(3)若函数在上有漂移点,求实数的取值范围.21.求满足以下条件的m值.(1)已知直线2mx+y+6=0与直线(m-3)x-y+7=0平行;(2)已知直线mx+(1-m)y=3与直线(m-1)x+(2m+3)y=2互相垂直.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据斜率的计算公式列出关于的方程,由此求解出.【详解】因为,所以,故选:C.2、A【解析】先将分别变形,然后根据数值的奇偶判断出的关系,由此求解出的结果.【详解】因为,所以,所以;又因为,所以,所以,又因为表示所有的奇数,表示部分奇数,所以;所以,故选:A.3、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.4、A【解析】先求出∁UB,再求A∩(∁UB)即可.【详解】解:由已知∁UB={2,5},所以A∩(∁UB)={2,5}.故选:A.【点睛】本题考查集合的交集和补集的运算,是基础题.5、D【解析】设出扇形半径并表示出弧长后,由扇形面积公式求出取到面积最大时半径的长度,代入圆心角弧度公式即可得解.【详解】设扇形半径,易得,则由已知该扇形弧长为.记扇形面积为,则,当且仅当,即时取到最大值,此时记扇形圆心角为,则故选:D6、C【解析】根据并集的定义计算【详解】由题意故选:C7、B【解析】转化原式为,结合均值不等式即得解【详解】由题意,故则当且仅当,即时等号成立故选:B8、A【解析】由题意知原命题为假命题,故命题的否定为真命题,再利用,即可得到答案.【详解】由题意可得“”是真命题,故或.故选:A.9、C【解析】依题意可得,则,再利用基本不等式计算可得;【详解】解:因为且,所以,所以当且仅当,即,时取等号;所以的最小值为故选:C【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10、C【解析】根据已知不等式可以判断函数的单调性,再结合四个选项进行判断即可.【详解】因为,所以由,构造新函数,因此有,所以函数是增函数.A:,因为,所以不符合增函数的性质,故本选项不符合题意;B:,当时,函数单调递减,故本选项不符合题意;C:,显然符合题意;D:,因为,所以不符合增函数的性质,故本选项不符合题意,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设圆锥的母线为,底面半径为则因此圆锥的高是考点:圆锥的侧面展开图12、【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果.【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.13、①.0.005(或)②.126.5(或126.5分)【解析】根据频率分布直方图的性质得到参数值,进而求得平均值.详解】由频率分布直方图可得:,∴;该班的数学成绩平均值为.故答案为:14、【解析】先求得,然后利用向量运算求得【详解】,,所以,.故答案为:15、【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:16、【解析】综合考虑值域与单调性即可写出满足题意的函数解析式.【详解】,理由如下:为上的减函数,且,为上的增函数,且,,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)将两直线方程联立,求出方程组的公共解,即可得出点的坐标;(2)求出直线的斜率,可得出垂线的斜率,然后利用点斜式方程可得出所求直线的方程,化为一般式即可.【详解】(1)由,解得,因此,点的坐标为;(2)直线斜率为,垂直于直线的直线斜率为,则过点且垂直于直线的直线的方程为,即:.【点睛】本题两直线交点坐标计算,同时也考查了直线的垂线方程的求解,解题时要将两直线的垂直关系转化为斜率关系,考查计算能力,属于基础题.18、(1)(2)图象见解析,所有零点之和为【解析】(1)依题意在时取最大值,在时取最小值,再根据函数在单调,即可得到,即可求出,再根据函数在取得最大值求出,即可求出函数解析式;(2)列出表格画出函数图象,再根据函数的对称性求出零点和;【小问1详解】解:依题意在时取最大值,在时取最小值,又函数在区间单调,所以,即,又,所以,由得,即,又因为,所以,,所以.【小问2详解】解:列表如下0001所以函数图象如下所示:由图知的一条对称轴为有两个实数根,记为,则由对称性知,所以所有实根之和为.19、(1)(2)最多使用10年报废【解析】(1)根据题意,即可求得年平均费用y关于x的表达式;(2)由,结合基本不等式,即可求解.【小问1详解】解:由题意,设备每年的管理费是0.45万元,使用年时,总的维修费用为万元,所以关于的表达式为.【小问2详解】解:因为,所以,当且仅当时取等号,即时,函数有最小值,即这套设备最多使用10年报废.20、(1)没有,理由见解析;(2)证明见解析;(3).【解析】(1)根据给定定义列方程求解判断作答.(2)根据给定定义构造函数,由零点存在性定理判断函数的零点情况即可作答.(3)根据给定定义列方程,变形构造函数,利用函数有零点分类讨论计算作答.【小问1详解】假设函数有“漂移点”,则,此方程无实根,所以函数没有漂移点.【小问2详解】令,,则,有,即有,而函数在单调递增,因此,在上有一个实根,所以函数在上有漂移点.小问3详解】依题意,设在上的漂移点为,则,即,亦即,整理得:,由已知可得,令,,则在上有零点,当时,的图象的对称轴为,而,则,即,整理得,解得,则,当时,,0,则不成立,当时,,在上单调递增,又,则恒大于0,因此,在上没有零点.综上得,.【点睛】思路点睛:涉及一元二次方程的实根分布问题,可借助二次函数的图象及其性质,利用数形结合的方法解决问题.21、(1)(2)或【解析】(1)平行即两直线的斜率相等,建立等式,即可得出答案.(2)直线垂直即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 台州浙江台州玉环市食品药品检验检测中心招聘编外用工人员笔试历年参考题库附带答案详解
- 2025 小学六年级科学上册青春期的自我保护与沟通课件
- 生产安全意识教育培训课件
- 企业火灾隐患整改制度
- 卫生局安全生产例会制度
- 私立幼儿园卫生监督制度
- 住宿生卫生评比制度
- 2025-2026学年黑龙江省部分校高三11月月考语文试题(解析版)
- 2025-2026学年河南省天一大联考高三上学期阶段性检测语文试题(解析版)
- 2025-2026学年河南省TOP二十名校高二上学期10月调研考试(B卷)语文试题(解析版)
- 2025核电行业市场深度调研及发展趋势与商业化前景分析报告
- 急惊风中医护理查房
- 营地合作分成协议书
- GB/T 70.2-2025紧固件内六角螺钉第2部分:降低承载能力内六角平圆头螺钉
- 物流管理毕业论文范文-物流管理毕业论文【可编辑全文】
- 烟草门店合作合同范本
- 壁球裁判试题及答案
- 2025年配音演员保密合同协议
- 网络销售人员培训
- 设备租赁绩效考核与激励方案设计实施方法规定
- 屠宰场现场施工方案
评论
0/150
提交评论