福建省厦门松柏中学2026届高二数学第一学期期末质量检测试题含解析_第1页
福建省厦门松柏中学2026届高二数学第一学期期末质量检测试题含解析_第2页
福建省厦门松柏中学2026届高二数学第一学期期末质量检测试题含解析_第3页
福建省厦门松柏中学2026届高二数学第一学期期末质量检测试题含解析_第4页
福建省厦门松柏中学2026届高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省厦门松柏中学2026届高二数学第一学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左焦点为,,为双曲线的左、右顶点,渐近线上的一点满足,且,则双曲线的离心率为()A. B.C. D.2.已知双曲线,则双曲线M的渐近线方程是()A. B.C. D.3.双曲线:(,)的左、右焦点分别为、,点在双曲线上,,,则的离心率为()A. B.2C. D.4.为迎接第24届冬季奥运会,某校安排甲、乙、丙、丁、戊共5名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人,每人只能安排到1个项目,则所有排法的总数为()A.60 B.120C.150 D.2405.等差数列前项和,已知,,则的值是().A. B.C. D.6.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件7.已知数列的前项和满足,记数列的前项和为,.则使得的值为()A. B.C. D.8.展开式中第3项的二项式系数为()A.6 B.C.24 D.9.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.1410.设是公差的等差数列,如果,那么()A. B.C. D.11.某工厂节能降耗技术改造后,在生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如下表,现发现表中有个数据看不清,已知回归直线方程为=6.3x+6.8,下列说法正确的是()x23456y1925★4044A.看不清的数据★的值为33B.回归系数6.3的含义是产量每增加1吨,相应的生产能耗实际增加6.3吨C.据此模型预测产量为8吨时,相应的生产能耗为50.9吨D.回归直线=6.3x+6.8恰好经过样本点(4,★)12.等差数列x,,,…的第四项为()A.5 B.6C.7 D.8二、填空题:本题共4小题,每小题5分,共20分。13.四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,侧面ABE⊥底面BCDE,BC=2,CD=4(I)证明:AB⊥面BCDE;(II)若AD=2,求二面角C-AD-E的正弦值14.设抛物线的准线方程为__________.15.已知直线与直线平行,则直线,之间的距离为__________.16.已知数列的前项和为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,焦点,A,B是上关于原点对称的两点,的周长的最小值为(1)求的方程;(2)直线FA与交于点M(异于点A),直线FB与交于点N(异于点B),证明:直线MN过定点18.(12分)已知椭圆的一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.19.(12分)如图,在直三棱柱中,,,,分别为,,的中点,点在棱上,且,,.(1)求证:平面;(2)求证:平面平面;(3)求平面与平面的距离.20.(12分)已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴的正半轴上,是否存在某个确定的点M,过该点的动直线与抛物线C交于A,B两点,使得为定值.如果存在,求出点M的坐标;如果不存在,请说明理由.21.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)求的单调区间;22.(10分)在平面直角坐标系中,动点到点的距离等于点到直线的距离.(1)求动点的轨迹方程;(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,在轴上是否存在一点,使若存在,求出点的坐标;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由双曲线的渐近线方程和两点的距离公式,求得点的坐标和,在中,利用余弦定理,求得的关系式,再由离心率公式,计算即可求解.【详解】由题意,双曲线,可得,设在渐近线上,且点在第一象限内,由,解得,即点,所以,在中,由余弦定理可得,可得,即,所以双曲线离心率为.故选:C.【点睛】求解椭圆或双曲线的离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.2、C【解析】由双曲线的方程直接求出见解析即可.【详解】由双曲线,则其渐近线方程为:故选:C3、C【解析】根据双曲线定义、余弦定理,结合题意,求得关系,即可求得离心率.【详解】根据题意,作图如下:不妨设,则,,①;在△中,由余弦定理可得:,代值得:,②;联立①②两式可得:;在△和△中,由,可得:,整理得:,③;联立②③可得:,又,故可得:,则,则,故离心率为.故选:C.4、C【解析】结合排列组合的知识,分两种情况求解.【详解】当分组为1人,1人,3人时,有种,当分组为1人,2人,2人时有种,所以共有种排法.故选:C5、C【解析】由题意,设等差数列的公差为,则,故,故,故选6、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.7、B【解析】由,求得,得到,结合裂项法求和,即可求解.【详解】数列的前项和满足,当时,;当时,,当时,适合上式,所以,则,所以.故选:B.8、A【解析】根据二项展开式的通项公式,即可求解.【详解】由题意,二项式展开式中第3项,所以展开式中第3项的二项式系数为.故选:A.9、A【解析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【详解】数列{an}是等差数列,,那么,所以.故选:A.【点睛】本题考查等差数列的性质和前项和,属于基础题型.10、D【解析】由已知可得,即可得解.【详解】由已知可得.故选:D.11、D【解析】根据回归直线方程的性质和应用,对每个选项进行逐一分析,即可判断和选择.【详解】对A:因为,将代入,故,∴,故A错误;对,回归系数6.3的含义是产量每增加1吨,相应的生产能耗大约增加6.3吨,故错误;对,当时,,故错误;对,因为,故必经过,故正确.故选:.12、A【解析】根据等差数列的定义求出x,求出公差,即可求出第四项.【详解】由题可知,等差数列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四项为-1+(4-1)×2=5.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、(Ⅰ)详见解析;(Ⅱ).【解析】(Ⅰ)推导出BE⊥BC,从而BE⊥平面ABC,进而BE⊥AB,由面ABE⊥面BCDE,得AB⊥BC,由此能证明AB⊥面BCDE(Ⅱ)以B为原点,所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣AD﹣E的正弦值【详解】由侧面底面,且交线为,底面为矩形所以平面,又平面,所以由面面,同理可证,又面在底面中,,由面,故,以为原点,所在直线分别为轴建立空间直角坐标系,则,设平面的法向量,则,取所以平面的法向量,同理可求得平面的法向量.设二面角的平面角为,则故所求二面角的正弦值为.【点睛】本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题14、【解析】由题意结合抛物线的标准方程确定其准线方程即可.【详解】由抛物线方程可得,则,故准线方程为.故答案为【点睛】本题主要考查由抛物线方程确定其准线方法,属于基础题.15、【解析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出【详解】解:因为直线与直线平行,所以,解得,当时,,,则故答案为:【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键16、【解析】根据题意求得,得到,利用等差数列的求和公式,求得,结合裂项法求和法,即可求解.【详解】由,可得,即,因为,所以,又因为,所以,可得,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)设椭圆的左焦点为,根据椭圆的对称性可得,则三角形的周长为,再设根据二次函数的性质得到,即可求出的周长的最小值为,从而得到,再根据,即可求出、,从而求出椭圆方程;(2)设直线MN的方程,,,,联立直线与椭圆方程,消元列出韦达定理,再设直线的方程、,直线的方程、,联立直线方程,消元列出韦达定理,即可表示,即可得到,整理得,再代入,,即可得到,从而求出,即可得解;【小问1详解】设椭圆的左焦点为,则由对称性,,所以的周长为设,则,当A,B是椭圆的上下顶点时,的周长取得最小,所以,即,又椭圆焦点,所以,所以,所以,解得,,所以椭圆的方程为.【小问2详解】解:当A,B为椭圆左右顶点时,直线MN与x轴重合;当A,B为椭圆上下顶点时,可得直线MN的方程为;设直线MN的方程,,,,由得,,,,设直线的方程,其中,,,由得,,,,设直线的方程,其中,,由得,,,所以,所以,所以,则,即,代入,,得,整理得,又所以,直线MN的方程为,综上直线MN过定点18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的一个顶点为,即.由,解得.∴椭圆C的标准方程是;(Ⅱ)由题可知点,设直线AP的斜率为k,由题意知,直线BP的斜率为,设,,直线AP的方程为,即.联立方程组消去y得.∵P,A为直线AP与椭圆C的交点,∴,即.把换成,得.∴,解得,当时,直线BP的方程为,经验证与椭圆C相切,不符合题意;当时,直线BP的方程为,符合题意.∴直线AP得方程为.【点睛】关键点点睛:两条直线关于直线对称,两直线的倾斜角互补,斜率互为相反数.19、(1)见解析(2)见解析(3)【解析】(1)利用勾股定理证得,证明平面,根据线面垂直的性质证得,再根据线面垂直的判定定理即可得证;(2)取的中点,连接,可得为的中点,证明,四边形是平行四边形,可得,再根据面面平行的判定定理即可得证;(3)设,由(1)(2)可得即为平面与平面的距离,求出的长度,即可得解.【小问1详解】证明:在直三棱柱中,为的中点,,,故,因为,所以,又平面,平面,所以,又因,,所以平面,又平面,所以,又,所以平面;【小问2详解】证明:取的中点,连接,则为的中点,因为,,分别为,,的中点,所以,且,所以四边形是平行四边形,所以,所以,又平面,平面,所以平面,因为,所以,又平面,平面,所以平面,又因,平面,平面,所以平面平面;【小问3详解】设,因为平面,平面平面,所以平面,所以即为平面与平面的距离,因平面,所以,,所以,即平面与平面的距离为.20、(1);(2).【解析】(1)直线与抛物线相切,所以有,可解得,得抛物线方程.(2)联立直线与抛物线有,把目标式坐标化可得与无关,可得.试题解析:(1)联立方程有,,有,由于直线与抛物线相切,得,所以.(2)假设存在满足条件的点,直线,有,,设,有,,,,当时,为定值,所以.21、(1)(2)详见解析【解析】(1)分别求得和,从而得到切线方程;(2)求导后,令求得两根,分别在、和三种情况下根据导函数的正负得到函数的单调区间.【详解】(1),,,,又,在处的切线方程为.(2),令,解得:,.①当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;②当时,在上恒成立,的单调递增区间为,无单调递减区间;③当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;综上所述:当时,的单调递增区间为,;单调递减区间为;当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,;单调递减区间为.【点睛】本题考查利用导数的几何意义求解曲线在某一点处的切线方程、利用导数讨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论