2026年四川巴中市高三一诊高考数学试卷试题(含答案详解)_第1页
2026年四川巴中市高三一诊高考数学试卷试题(含答案详解)_第2页
2026年四川巴中市高三一诊高考数学试卷试题(含答案详解)_第3页
2026年四川巴中市高三一诊高考数学试卷试题(含答案详解)_第4页
2026年四川巴中市高三一诊高考数学试卷试题(含答案详解)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page11页,共=sectionpages33页试卷第=page11页,共=sectionpages33页巴中市普通高中2023级“一诊”考试数学试题一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则()A. B. C. D.2.已知复数满足,则()A. B. C. D.3.若是夹角的单位向量,,则()A. B.2 C. D.4.欧拉函数的函数值等于所有不超过正整数,且与互素的正整数的个数,例,则()A.4 B.5 C.6 D.75.两直线和分别与抛物线相交于不同于原点的两点,则直线恒过的点是()A. B. C. D.6.设是等比数列的前项之和,成等差数列,则()A. B. C.2 D.37.已知正四面体,为的中点,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.8.若定义在上的函数满足为奇函数,为偶函数,且,则()A.-1 B.0 C.1 D.二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分)9.若,则关于事件的关系正确的是()A.事件与互斥 B.事件与不互斥C.事件与不相互独立 D.事件与相互独立10.在边长为2的正方形中,是的中点,是的中点,将,分别沿,折起,使三点重合于点,则()A.B.三棱锥的体积为C.三棱锥的外接球的表面积为D.点到平面的距离为11.已知双曲线的两条渐近线分别为为双曲线上一点,则()A.越大,则双曲线的离心率越大B.过点与双曲线仅有一个交点的直线只有一条C.点到两渐近线的距离之积为定值D.过点作双曲线的切线交渐近线于两点,则为的中点三、填空题(本大题共3小题,每小题5分,共15分)12.一个火车站有8股道,如果每股道只能停放1列火车,现要停放4列不同的火车,每两列火车不能停在相邻股道,则不同的停放方法共有种.13.若直线是圆的一条对称轴,则的最小值是.14.若不等式恒成立,则的取值范围.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.在中,角的对边分别为,已知.(1)若,求的值;(2)若,为线段上一点,且,求的值.16.有6个红色小球和4个黑色小球(除颜色不同外,其余都相同),将其中2个红色小球和3个黑色小球放入一个不透明的箱子中,剩余的4个红色小球和1个黑色小球放在箱外.现从箱子中随机取出1个小球,若取出红色小球,则把它放回箱子中;若取出黑色小球,则该黑色小球不再放回,并将箱子外1个红色小球放入箱中.按此操作若干次,直到将箱中的黑色小球全部置换为红色小球为止.(1)求在操作3次后箱中黑色小球剩余0个的概率;(2)记在操作3次后箱中黑色小球的个数为随机变量,求的分布列及数学期望;(3)在第1次取到红色小球的条件下,求再操作4次恰好完成置换的概率.17.如图①所示将边长为的正方形,沿翻折如图②所示,点分别为的中点,在折叠过程中.二面角的范围为.(1)求证:四边形EFGH为矩形;(2)求点到平面距离的最大值.18.函数.(1)求曲线在点处的切线方程;(2)求函数在上的最大值;(3)设,求证:.19.已知动点与定点的距离和到定直线的距离之比是常数.(1)求点的轨迹;(2)、为轨迹上不同的两点,①若直线斜率存在且过点,,直线分别与直线,交于点是否为定值?若是,求出此定值;若不是,请说明理由.②若,求的最大值与最小值.答案第=page11页,共=sectionpages22页答案第=page11页,共=sectionpages22页1.B【分析】解不等式得集合,并将集合使用列举法表示,再使用交集的运算即可求.【详解】解,得,则有集合,易得集合,则.故选:B.2.D【分析】先根据复数的除法运算求出,然后根据共轭复数的概念求出结果.【详解】因为复数满足,所以.所以.故选:D.3.C【分析】结合向量的模及数量积的公式即可求解.【详解】因为是夹角的单位向量,所以,.故答案为:C4.A【分析】由题意将1到10分别列出并分析是否互素(最大公约数为1)即可.【详解】由题意得表示不超过10且与10互素的正整数的个数,易得1与10互素;2与10最大公约数是2,不互素,3与10互素;4与10最大公约数是2,不互素;5与10最大公约数是5,不互素;6与10最大公约数是2,不互素;7与10互素;8与10最大公约数是2,不互素;9与10互素;10与10最大公约数是10,不互素.故与10互素的有1,3,7,9,共4个,即,故选:A.5.D【分析】联立直线与抛物线方程,求出的坐标,然后求出直线的方程,进而可求出结果.【详解】因为两直线和分别与抛物线相交于不同于原点的两点,所以分别联立直线与抛物线为:,化简得和.解得和,所以.所以直线的斜率为,所以直线的方程为.化简得,所以直线恒过的点是.故选:D.6.C【分析】根据等差数列的性质和等比数列前项和公式以及等比数列的通项公式计算即可.【详解】设等比数列的首项为,公比为,当时,,所以.此时,所以.那么,因为成等差数列,所以,所以有,化简得,由于,所以解得,又,所以,所以.故选:C.7.A【分析】建立空间直角坐标系,设正四面体边长为2,设,通过即可求点坐标,从而可表示和,进而可求,即异面直线与所成角的余弦值.【详解】以点为原点,为轴,在平面内过点作轴与垂直,过作轴垂直于平面,建立空间直角坐标系如下:不妨设正四面体的边长为2,则,设点,则有,解得,因为是的中点,则有,即,因为是的中点,则有,即,则,则,故选:A.8.B【分析】本题可根据为奇函数、为偶函数得出函数的对称中心和对称轴,进而推出函数的周期,再结合已知条件求出一个周期内的值,最后根据周期性计算.【详解】因为为奇函数,所以,令,则,那么,所以,即,因此的图象关于点对称,因为为偶函数,所以,令,则,那么,所以,即,因此的图象关于直线对称,由,令

得,即,令,得,又,所以,令,则,即,令得,令得,由和可得,所以函数的周期为8,因为函数的图象关于点对称,所以,由,令,可得,由,令,可得,由,令,可得,所以,由,令,可得,所以,由,令,可得,所以,所以,因为函数的周期为8,且,所以又因为的周期为8,所以,故数列是以4为周期的数列,所以,因为,则.故选:B.9.BD【分析】根据互斥事件和独立事件的定义判断即可.【详解】因为,所以事件与不互斥,A错误B正确;因为,所以.所以,又,所以,所以事件与相互独立,C错误D正确.故选:BD.10.ACD【分析】先根据折叠前后的几何关系证出平面,利用等体积法结合三棱锥体积公式计算体积;再将三棱锥补成长方体,根据外接球的性质计算表面积;利用等体积法,先计算的面积,再用体积公式计算点到平面的距离.【详解】如图,在正方形中,,,折叠后,,因为,且平面,所以平面,又因为平面,所以,故选项A正确,由选项A,知平面,所以为三棱锥的高,已知正方形边长为是的中点,是的中点,则,则,所以,故选项B错误.由于,所以三棱锥的外接球就是以为棱的长方体的外接球,所以,则,因此外接球的表面积,故选项C正确.设点P到平面的距离为,由选项B可知,在中,根据余弦定理,则,所以,因此,即,解得,故选项D正确.故答案选:ACD11.ACD【分析】本题A主要考查双曲线的离心率与渐近线的关系;B考查过双曲线上的一点的直线与渐近线的关系;C利用点到直线的距离求解即可;D根据直线与双曲线联立,求出交点坐标后,利用中点坐标验证即可。【详解】A,因为双曲线的离心率公式:,所以越大,则双曲线的离心率越大,故A正确;B,过点与双曲线仅有一个交点的直线应该有三条,一条是过点的切线,另两条是与渐近线平行的直线,故B错误;C,设为双曲线上一点,代入方程得,去分母得,又因为渐近线为,所以点到两条渐近线的距离分别是,所以距离之积,显然是定值,故C正确;D,设,所以过点的切线方程是,联立切线与渐近线方程可得交点,所以MN的中点坐标=,故D正确;故选:ACD12.120【分析】利用插空法进行计算即可.【详解】总共有8股股道,要停放4列火车,那么剩下的空股道有股.这4股空股道排好后,会形成个可以插入火车的“空隙”(包括两端).首先,从5个空隙中选4个,有种选法,然后,将4列不同的火车在这4个位置上进行全排列,有种排法.总的方法数是选位置的方法数乘以排列的方法数,即:种.故答案为:120.13.9【分析】由题意得直线过圆心,可得,再使用1的代换,即可求得的最小值.【详解】易得圆心,半径,由题意得直线过圆心,则有,故,当且仅当即时取等号,故的最小值是9,故答案为:9.14.【分析】将原不等式变形为,构造函数,得到在R上单调递增,从而将问题转化为恒成立,令,,利用导数求出的最小值即可求解.【详解】左右两边同时加,并将移项得,整理得,设,,故在R上单调递增,则原不等式可化为,所以,整理得,令,,设,,则,令,则,故当时,,当时,,所以在上单调递减,在上单调递增,所以,对方程,,故存在实数使成立,所以,即.故答案为:.15.(1)(2)【分析】(1)由余弦定理先求出,再由正弦定理计算出的值即可;(2)由题意可得到的距离等于到的距离,则有为的角平分线,此时,以此即可求得的值.【详解】(1)在中,由余弦定理得,所以,又由正弦定理得

,则;(2)在中,为线段上一点,且,设点到,的距离分别为.则,所以,则为的角平分线,所以,即,解得,故的值为.16.(1)(2)分布列见解析,(3)【分析】(1)操作3次后箱中黑色小球剩余0个意味着三次均摸到黑球,据此即可计算求解;(2)求出的所有取值及其相应概率、结合均值公式即可1求解;(3)若第一次摸到红球,再操作4次取走全部黑球,那么说明后面4次操作中摸到3次黑球1次红球,与(2)类似,讨论红球是在第几次摸到,结合条件概率公式即可.【详解】(1)设操作3次后箱中黑色小球剩余0个的概率为,由题意知.(2)由题意可知,的所有取值为0,1,2,3则,,,,所以的分布列为:0123所以.(3)记事件为1次取到红色小球,事件为4次恰好完成置换,由题意得,则第1次取到取到红色小球,则再操作4次,须将箱中黑色小球全部置换为红色小球,①若第二次也取出红色小球,则第三次、第四次、第五次均须取出黑色小球,其概率为,②若第二次取出黑色小球,则第三次取出红色小球,第四次和第五次均须取出黑色小球,其概率为,③若第二次取出黑色小球,则第三次取出黑色小球,第四次取出红色小球,第五次取出黑色小球,其概率为,综上所述,,所以,即在第1次取到红色小球的条件下,再操作4次恰好完成置换的概率为.17.(1)证明见解析(2)【分析】(1)根据条件先证明四边形为平行四边形,根据图1边之间的关系结合翻折,可得平面,则有,即可证四边形为矩形.(2)为空间直角坐标系原点,分别以,方向为轴,轴,作垂直于平面且垂足点的轴,设二面角为,则可以表示,进而可求的法向量,根据点到平面距离公式,结合增减性,即可求得点到平面距离的最大值.【详解】(1)因为在图②中,点分别为的中点,所以,即且,则四边形为平行四边形,又因为四边形是正方形,所以在图①中有,折叠后在图②中且面,所以平面,又因为平面,所以,则,综上可知四边形为矩形.(2)因为,则以为空间直角坐标系原点,分别以,方向为轴,轴,作垂直于平面且垂足点的轴,设二面角为,由题意得,,,所以,设平面的法向量,则,令,得,所以点到平面距离即,(因为)令,因为,则令,易知函数在上单调递减,所以当时,,综上可知,点到平面距离的最大值为.18.(1)(2)(3)证明见解析【分析】(1)对函数求导后分别求出,即可得到切线的切点和斜率,并使用点斜式求得切线方程;(2)令求出在上的增减性后即可求得最大值;(3)设,则不等式为,设,多次求导后确定在内有零点,从而确定的最小值为0,即可得证.【详解】(1)由题意得,,,故切线方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论