版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省师大附中2026届高二数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间向量,,则()A. B.19C.17 D.2.经过点且与双曲线有共同渐近线的双曲线方程为()A. B.C. D.3.已知数列满足,则()A.2 B.C.1 D.4.抛物线的焦点是A. B.C. D.5.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-26.圆与的公共弦长为()A. B.C. D.7.中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见首日行里数,请公仔细算相还.”其大意为:有一个人走里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,恰好走了天到达目的地,则该人第一天走的路程为()A.里 B.里C.里 D.里8.已知,则下列三个数,,()A.都不大于-4 B.至少有一个不大于-4C.都不小于-4 D.至少有一个不小于-49.某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A. B.C. D.10.年1月初,中国多地出现散发病例甚至局部聚集性疫情,在此背景下,各地陆续发出“春节期间非必要不返乡”的倡议,鼓励企事业单位职工就地过年.某市针对非本市户籍并在本市缴纳社保,且春节期间在本市过年的外来务工人员,每人发放1000元疫情专项补贴.小张是该市的一名务工人员,则“他在该市过年”是“他可领取1000元疫情专项补贴”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.12.若函数有两个不同的极值点,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,若,则实数___________.14.已知抛物线C:y2=8x的焦点为F,直线l过点F与抛物线C交于A,B两点,以F为圆心的圆交线段AB于C,D两点(从上到下依次为A,C,D,B),若,则该圆的半径r的取值范围是____________.15.如图,按照以下规律排列的数阵中,第i行从左向右第j个数记为,如,,则______;令则______16.将车行的30辆大巴车编号为01,02,…,30,采用系统抽样方法抽取一个容量为3的样本,且在某组随机抽得的一个号码为08,则剩下的两个号码依次是__________(按号码从小到大排列)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,圆(1)若过点的直线与圆相切,求直线的方程;(2)若直线与圆相交于A,两点,弦的长为,求的值18.(12分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程19.(12分)已知数列中,,___________,其中.(1)求数列的通项公式;(2)设,求证:数列是等比数列;(3)求数列的前n项和.从①前n项和,②,③且,这三个条件中任选一个,补充在上面的问题中并作答.20.(12分)在中,,,的对边分别是,,,已知.(1)求;(2)若,且的面积为4,求的周长21.(12分)如图,已知等腰梯形,,为等腰直角三角形,,把沿折起(1)当时,求证:;(2)当平面平面时,求平面与平面所成二面角的平面角的正弦值22.(10分)已知函数的图象在处的切线方程为.(1)求的解析式;(2)若关于的方程在上有解,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求出的坐标,再求出其模【详解】因为,,所以,故,故选:D.2、C【解析】共渐近线的双曲线方程,设,把点代入方程解得参数即可.【详解】设,把点代入方程解得参数,所以化简得方程故选:C.3、D【解析】首先得到数列的周期,再计算的值.【详解】由条件,可知,两式相加可得,即,所以数列是以周期为的周期数列,.故选:D4、D【解析】先判断焦点的位置,再从标准型中找出即得焦点坐标.【详解】焦点在轴上,又,故焦点坐标为,故选D.【点睛】求圆锥曲线的焦点坐标,首先要把圆锥曲线的方程整理为标准方程,从而得到焦点的位置和焦点的坐标.5、D【解析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D6、D【解析】已知两圆方程,可先让两圆方程作差,得到其公共弦的方程,然后再计算圆心到直线的距离,再结合勾股定理即可完成弦长的求解.【详解】已知圆,圆,两圆方程作差,得到其公共弦的方程为::,而圆心到直线的距离为,圆的半径为,所以,所以.故选:D.7、C【解析】建立等比数列的模型,由等比数列的前项和公式求解【详解】记第天走的路程为里,则是等比数列,,,故选:C8、B【解析】利用反证法设,,都大于,结合基本不等式即可得出结论.【详解】设,,都大于,则,由于,故,利用基本不等式可得,当且仅当时等号成立,这与假设所得结论矛盾,故假设不成立,故下列三个数,,至少有一个不大于,故选:B.9、D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没有女同学被选中的情况是:,,,,,共种,则至少有一名女同学被选中的概率为.故选:.10、B【解析】根据充分条件、必要条件的定义进行判定.【详解】只有非本市户籍并在本市缴纳社保的外来务工人员就地过年,才可领取1000元疫情专项补贴,小张是该市的一名务工人员,但他可能是本市户籍或非本市户籍但在本市未缴纳社保,所以“他在该市过年”是“他可领取1000元疫情专项补贴”的必要不充分条件.故选:B.11、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程12、D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用向量平行的条件直接解出.【详解】因为向量,且,所以,解得:2故答案为:214、【解析】设出直线的方程为,代入抛物线方程,消去,可得关于的二次方程,运用韦达定理及抛物线的定义,化简计算可求解.【详解】抛物线C:y2=8x的焦点为,设以为圆心的圆的半径为,可知,,设,直线的方程为,则,代入抛物线方程,可得,即有,,,,即,所以.故答案为:15、①.55②.【解析】令易知是首项为,公差为1的等差数列,写出通项公式,再应用累加法求及通项公式,结合求通项公式,进而可得,最后两次应用错位相减法求即可.【详解】由题设知:令,则是首项为,公差为1的等差数列,故,所以,即,由上可得:,则,而,所以,则,所以,,所以,令,则,所以,故,综上,,则.故答案为:,.【点睛】关键点点睛:通过图总结规律,易知是等差数列,应用累加法求,再由求通项公式,最后应用错位相减法求前n项和.16、18,28【解析】根据等距抽样的性质确定剩下的两个号码即可.【详解】由于从30辆大巴车中抽取3辆车,故分组间距为10,又第一组的号码为08,所以其它两个号码依次是18,28故答案为:18,28.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)【解析】(1)分直线斜率存在和不存在两种情况分析,当当过点的直线存在斜率时,设方程为,利用圆心到直线的距离等于半径求得k,即可得出答案;(2)求出圆心到直线的距离,再根据圆的弦长公式即可得出答案.【详解】解:(1)由题意知圆心的坐标为,半径,当过点的直线斜率不存在时,方程为,由圆心到直线的距离知,直线与圆相切,当过点的直线存在斜率时,设方程为,即由题意知,解得,直线的方程为故过点的圆的切线方程为或(2)圆心到直线的距离为,,解得18、(1);(2)或【解析】(1)根据椭圆的焦距为2,离心率为,求出,,即可求椭圆的方程;(2)设直线方程为,代入椭圆方程,由得,利用韦达定理,化简可得,求出,即可求直线的方程.试题解析:(1)设椭圆方程为,因为,所以,所求椭圆方程为.(2)由题得直线l的斜率存在,设直线l方程为y=kx+1,则由得,且.设,则由得,又,所以消去得,解得,,所以直线的方程为,即或.19、(1)(2)见解析(3)【解析】(1)选①,根据与的关系即可得出答案;选②,根据与的关系结合等差数列的定义即可得出答案;选③,利用等差中项法可得数列是等差数列,再求出公差,即可得解;(2)求出数列的通项公式,再根据等比数列的定义即可得证;(3)求出数列的通项公式,再利用错位相减法即可得出答案.【小问1详解】解:选①,当时,,当时,也成立,所以;选②,因为,所以,所以数列是以为公差的等差数列,所以;选③且,因为,所以数列是等差数列,公差,所以;【小问2详解】解:由(1)得,则,所以数列是以为首项,为公比的等比数列;【小问3详解】解:,,①,②由①②得,所以.20、(1)(2)【解析】(1)根据正弦定理及题中条件,可得,化简整理,即可求解(2)由的面积为4,结合(1)中结论,可得,结合余弦定理,可得,从而可求的周长【详解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面积为,∴.由余弦定理得,∴.故的周长为.【点睛】本题考查正弦定理应用,余弦定理解三角形,三角形面积公式,考查计算化简的能力,属基础题21、(1)证明见解析(2)【解析】(1)取的中点E,连,证明四边形为平行四边形,从而可得为等边三角形,四边形为菱形,从而可证,,即可得平面,再根据线面垂直的性质即可得证;(2)取的中点M,连接,以B为空间坐标原点,向量分别为x,y,z轴建立空间直角坐标系,利用向量法即可得出答案.【小问1详解】解:取的中点E,连,∵,∴,∵,∴四边形为平行四边形,∵,∴,∵,∴为等边三角形,四边形为菱形,∴,,∴∴,∵,,,平面,,∴平面,∵平面,∴;【小问2详解】解:取的中点M,连接,由(1)知,,∵平面平面,,∴平面,以B为空间坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,设平面的法向量为,由,,有,取,可得,设平面的法向量为,由,,有,取,有,有,故平面与平面所成二面角的正弦值为22、(1)(2)【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 那一天我真快乐我的情感记录与表达作文10篇
- 2025年上海浦东英语教编笔试及答案
- 2025年密云区笔试试卷答案
- 2025年面试医院行政岗笔试题目及答案
- 2025年12师事业编笔试及答案
- 2025年雪花啤酒技术质量部笔试及答案
- 2025年事业单位安排在周内考试及答案
- 2025年治安专管员笔试题目及答案
- 2025年大专事业编考试题目及答案
- 2025年肇庆医学院事业编笔试及答案
- 雷波县粮油贸易总公司 2026年面向社会公开招聘备考考试试题及答案解析
- 疗养院员工劳动保护制度
- 2026浙江温州市苍南县城市投资集团有限公司招聘19人考试参考试题及答案解析
- 2026年广州中考化学创新题型特训试卷(附答案可下载)
- 2025司法鉴定人资格考试考点试题及答案
- 保健用品生产管理制度
- 档案计件工资管理制度
- 浙江省杭州市拱墅区2024-2025学年八年级上学期语文期末试卷(含答案)
- DB11∕T 695-2025 建筑工程资料管理规程
- 产科护理中的人文关怀与沟通艺术
- 2025年内蒙古行政执法考试试题及答案
评论
0/150
提交评论