辽宁省凌源二中2026届高一数学第一学期期末经典模拟试题含解析_第1页
辽宁省凌源二中2026届高一数学第一学期期末经典模拟试题含解析_第2页
辽宁省凌源二中2026届高一数学第一学期期末经典模拟试题含解析_第3页
辽宁省凌源二中2026届高一数学第一学期期末经典模拟试题含解析_第4页
辽宁省凌源二中2026届高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省凌源二中2026届高一数学第一学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,则下列结论错误的是()A.与平面ABC所成的角为 B.平面C.与所成角为 D.2.下列关系中正确个数是()①②③④A.1 B.2C.3 D.43.若,则()A. B.C.或1 D.或4.已知角顶点与原点重合,始边与轴的正半轴重合,点在角的终边上,则()A. B.C. D.5.函数的零点所在的区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)6.已知a>0,则当取得最小值时,a值为()A. B.C. D.37.若cos(πA.-29C.-598.现在人们的环保意识越来越强,对绿色建筑材料的需求也越来越高.某甲醛检测机构对某种绿色建筑材料进行检测,一定量的该种材料在密闭的检测房间内释放的甲醛浓度(单位:)随室温(单位:℃)变化的函数关系式为(为常数).若室温为20℃时该房间的甲醛浓度为,则室温为30℃时该房间的甲醛浓度约为(取)()A. B.C. D.9.设,且,下列选项中一定正确的是()A. B.C. D.10.“”是“关于的方程有实数根”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线经过点,且与直线平行,则直线的方程为__________12.若点在过两点的直线上,则实数的值是________.13.设函数,则下列结论①的图象关于直线对称②的图象关于点对称③的图象向左平移个单位,得到一个偶函数的图象④的最小正周期为,且在上为增函数其中正确的序号为________.(填上所有正确结论的序号)14.若,则=_________.15.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.16.若的最小正周期为,则的最小正周期为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量m=(cos,sin),n=(2+sinx,2-cos),函数=m·n,x∈R.(1)求函数的最大值;(2)若且=1,求的值.18.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如表:t50110250Q150108150(1)根据表中数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt,并说明理由;(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.19.已知函数,.设函数.(1)求函数的定义域;(2)判断奇偶性并证明;(3)当时,若成立,求x的取值范围.20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以为上界有界函数,求实数的取值范围.21.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数3869人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为100万元,每生产万件,需另投入流动成本为万元,在年产量不足19万件时,(万元),在年产量大于或等于19万件时,(万元),每件产品售价为25元,通过市场分析,生产的医用防护用品当年能全部售完(1)写出年利润(万元)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,某厂家在这一商品的生产中所获利润最大?最大利润是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】在A中,∠C1AC是AC1与平面ABC所成的角,从而AC1与平面ABC所成的角为45°;在B中,连结OD,OD∥AC1,由此得到AC1∥平面CDB1;在C中,由CC1∥BB1,得∠AC1C是AC1与BB1所成的角,从而AC1与BB1所成的角为45°;在D中,连结OD,则OD∥AC1【详解】由在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,知:在A中,∵CC1⊥平面ABC,∴∠C1AC是AC1与平面ABC所成的角,∵AC=CC1,∴∠C1AC=45°,∴AC1与平面ABC所成的角为45°,故A错误;在B中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故B正确;在C中,∵CC1∥BB1,∴∠AC1C是AC1与BB1所成的角,∵AC=CC1,∴∠AC1C=45°,∴AC1与BB1所成的角为45°,故C正确;在D中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故D正确故选A【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题2、A【解析】根据集合的概念、数集的表示判断【详解】是有理数,是实数,不是正整数,是无理数,当然不是整数.只有①正确故选:A【点睛】本题考查元素与集合的关系,掌握常用数集的表示是解题关键3、A【解析】将已知式同分之后,两边平方,再根据可化简得方程,解出或1,根据,得出.【详解】由,两边平方得,或1,,.故选:A.【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对范围的判断.4、D【解析】先根据三角函数的定义求出,然后采用弦化切,代入计算即可【详解】因为点在角的终边上,所以故选:D5、B【解析】先求得函数的单调性,利用函数零点存在性定理,即可得解.【详解】解:因为函数均为上的单调递减函数,所以函数在上单调递减,因为,,所以函数的零点所在的区间是.故选:B6、C【解析】利用基本不等式求最值即可.【详解】∵a>0,∴,当且仅当,即时,等号成立,故选:C7、C【解析】cos(π2-α)=sin8、D【解析】由题可知,,求出,在由题中的函数关系式即可求解.【详解】由题意可知,,解得,所以函数的解析式为,所以室温为30℃时该房间的甲醛浓度约为.故选:D.9、D【解析】举出反例即可判断AC,根据不等式的性质即可判断B,利用作差法即可判断D.【详解】解:对于A,当时,不成立,故A错误;对于B,若,则,故B错误;对于C,当时,,故C错误;对于D,,因为,所以,,所以,即,故D正确.故选:D.10、A【解析】根据给定条件利用充分条件、必要条件的定义直接判断作答.【详解】当时,方程的实数根为,当时,方程有实数根,则,解得,则有且,因此,关于的方程有实数根等价于,所以“”是“关于的方程有实数根”的充分而不必要条件.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设与直线平行的直线,将点代入得.即所求方程为12、【解析】先由直线过两点,求出直线方程,再利用点在直线上,求出的值.【详解】由直线过两点,得,则直线方程为:,得,即,又点在直线上,得,得.故答案为:【点睛】本题考查了已知两点求直线的方程,直线方程的应用,属于容易题.13、③【解析】利用正弦型函数的对称性判断①②的正误,利用平移变换判断③的正误,利用周期性与单调性判断④的正误.【详解】解:对于①,因为f()=sinπ=0,所以不是对称轴,故①错;对于②,因为f()=sin,所以点不是对称中心,故②错;对于③,将把f(x)的图象向左平移个单位,得到的函数为y=sin[2(x)]=sin(2x)=cos2x,所以得到一个偶函数的图象;对于④,因为若x∈[0,],则,所以f(x)在[0,]上不单调,故④错;故正确的结论是③故答案为③【点睛】此题考查了正弦函数的对称性、三角函数平移的规律、整体角处理的方法,正弦函数的图象与性质是解本题的关键三、14、【解析】分析和的关系可知,然后用余弦的二倍角公式求解即可.【详解】∵,∴.故答案为:.15、①.②.【解析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【点睛】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.16、【解析】先由的最小正周期,求出的值,再由的最小正周期公式求的最小正周期.【详解】的最小正周期为,即,则所以的最小正周期为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(x)的最大值是4(2)-【解析】(1)先由向量的数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值【详解】(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因为f(x)=1,所以sin=.又因为x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【点睛】本题考查平面向量的综合题18、(1)选用二次函数Q=at2+bt+c进行描述,理由见解析;(2)150(天),100(元/10kg).【解析】(1)由所提供的数据和函数的单调性得出应选函数,再代入数据可得芦荟种植成本Q与上市时间t的变化关系的函数.(2)由二次函数的性质可以得出芦荟种植成本最低成本.【详解】(1)由所提供的数据可知,刻画芦荟种植成本Q与上市时间t的变化关系的函数不可能是常数函数,若用函数Q=at+b,Q=a·bt,Q=alogbt中的任意一个来反映时都应有a≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入函数Q=at2+bt+c,可得:,解得.所以,刻画芦荟种植成本Q与上市时间t变化关系的函数.(2)当时,芦荟种植成本最低为(元/10kg).【点睛】本题考查求回归方程,以及回归方程的应用,属于中档题.19、(1);(2)奇函数,证明见解析;(3).【解析】(1)根据对数函数真数大于0,建立不等式组求解即可;(2)根据奇函数的定义判断即可;(3)根据对数函数的单调性解不等式求解即可.【详解】(1)由,解得,所以函数的定义域为.(2)是奇函数.证明如下:,都有,∴是奇函数.(3)由可得,得,由对数函数的单调性得,解得解集为.20、(1);(2);(3).【解析】(1)由奇函数的定义,代入即可得出结果.(2)由复合函数的单调性,可得在区间上单调递增,进而求出值域,即可得出结果.(3)由题意可得在上恒成立,即在上恒成立,利用函数单调性的定义证明单调性,再求出值域,即可求出结果.【详解】(1)因函数为奇函数,所以,即,即,得,而当时不合题意,故(2)由(1)得:,而,易知在区间上单调递增,所以函数在区间上单调递增,所以函数在区间上的值域为,所以,故函数在区间上的所有上界构成集合为.(3)由题意知,在上恒成立.,.在上恒成立.设,,,由得设,,所以在上递减,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论