版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2000年普通高等学校招生全国统一考试数学试卷(全国卷.理)高考数学试卷【含答案】2/22000年普通高等学校招生全国统一考试(理工农医类)第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A和B都是自然数集合N,映射把集合A中的元素映射到集合B中的元素,则在映射下,象20的原象是(A)2 (B)3 (C)4 (D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)2 (B) (C) (D)3(3)一个长方体共一顶点的三个面的面积分别是,,,这个长方体对角线的长是(A)2 (B)3 (C)6 (D)(4)已知,那么下列命题成立的是(A)若、是第一象限角,则(B)若、是第二象限角,则(C)若、是第三象限角,则(D)若、是第四象限角,则(5)函数的部分图像是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累进计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元 (B)900~1200元(C)1200~1500元 (D)1500~2800元(7)若,P=,Q=,R=,则(A)RPQ (B)PQR(C)QPR (D)PRQ(8)以极坐标系中的点为圆心,1为半径的圆的方程是(A) (B)(C) (D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A) (B) (C) (D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A) (B) (C) (D)(11)过抛物线的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是、,则等于(A) (B) (C) (D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答).(14)椭圆的焦点为、,点P为其上的动点,当为钝角时,点P横坐标的取值范围是________.(15)设是首项为1的正项数列,且(=1,2,3,…),则它的通项公式是=________.(16)如图,E、F分别为正方体的面、面的中心,则四边形在该正方体的面上的射影可能是_______.(要求:把可能的图的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分)已知函数,.(I)当函数取得最大值时,求自变量的集合;(II)该函数的图像可由的图像经过怎样的平移和伸缩变换得到?(18)(本小题满分12分)如图,已知平行六面体ABCD-的底面ABCD是菱形,且===.(I)证明:⊥BD;(II)假定CD=2,=,记面为,面CBD为,求二面角的平面角的余弦值;(III)当的值为多少时,能使平面?请给出证明.(19)(本小题满分12分)设函数,其中.(I)解不等式;(II)求的取值范围,使函数在区间上是单调函数.
(20)(本小题满分12分)(I)已知数列,其中,且数列为等比数列,求常数;(II)设、是公比不相等的两个等比数列,,证明数列不是等比数列.(21)(本小题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ)写出图一表示的市场售价与时间的函数关系式P=;写出图二表示的种植成本与时间的函数关系式Q=;(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天)
(22)(本小题满分14分)如图,已知梯形ABCD中,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B为焦点.当时,求双曲线离心率的取值范围.参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.(1)C(2)B(3)D(4)D(5)D(6)C(7)B(8)C(9)A(10)C(11)C(12)D二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(13)252(14)-(15)(16)②③三、解答题(17)本小题主要考查三角函数的图象和性质,考查利用三角公式进行恒等变形的技能以及运算能力.满分12分.解:(Ⅰ)y=cos2x+sinxcosx+1=(2cos2x-1)++(2sinxcosx)+1=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+=sin(2x+)+--6分y取得最大值必须且只需2x+=+2kπ,k∈Z,即x=+kπ,k∈Z.所以当函数y取得最大值时,自变量x的集合为{x|x=+kπ,k∈Z}--8分(Ⅱ)将函数y=sinx依次进行如下变换:(i)把函数y=sinx的图象向左平移,得到函数y=sin(x+)的图象;(ii)把得到的图象上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图象;(iii)把得到的图象上各点纵坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图象;(iv)把得到的图象向上平移个单位长度,得到函数y=sin(2x+)+的图象;综上得到函数y=cos2x+sinxcosx+1的图象.--12分(18)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分.(Ⅰ)证明:连结A1C1、AC、AC和BD交于O,连结C1O.∵四边形ABCD是菱形,∴AC⊥BD,BD=CD.又∵∠BCC1=∠DCC1,C1C=C1C,∴△C1BC≌△C1DC∴C1B=C1D,∵DO=OB∴C1O⊥BD,--2分但AC⊥BD,AC∩C1O=O,∴BD⊥平面AC1,又C1C平面AC1∴C1C⊥BD.--4分(Ⅱ)解:由(Ⅰ)知AC⊥BD,C1O⊥BD,∴∠C1OC是二面角α-BD-β的平面角.在△C1BC中,BC=2,C1C=,∠BCC1=60º,∴C1B2=22+()2-2×2××cos60º=--6分∵∠OCB=30º,∴OB=BC=1.∴C1O2=C1B2-OB2=,∴C1O=即C1O=C1C.作C1H⊥OC,垂足为H.∴点H是OC的中点,且OH=,所以cos∠C1OC==.--8分(Ⅲ)当=1时,能使A1C⊥平面C1BD证明一:∵=1,∴BC=CD=C1C,又∠BCD=∠C1CB=∠C1CD,由此可推得BD=C1B=C1D.∴三棱锥C-C1BD是正三棱锥.--10分设A1C与C1O相交于G.∵A1C1∥AC,且A1C1∶OC=2∶1,∴C1G∶GO=2∶1.又C1O是正三角形C1BD的BD边上的高和中线,∴点G是正三角形C1BD的中心,∴CG⊥平面C1BD.即A1C⊥平面C1BD.--12分证明二:由(Ⅰ)知,BD⊥平面AC1,∵A1C平面AC1,∴BD⊥A1C.--10分当=1时,平行六面体的六个面是全等的菱形,同BD⊥A1C的证法可得BC1⊥A1C,又BD⊥BC1=B,∴A1C⊥平面C1BD.--12分(19)本小题主要考查不等式的解法、函数的单调性等基本知识,分类讨论的数学思想方法和运算、推理能力.满分12分.解:(Ⅰ)不等式f(x)≤1即≤1+ax,由此得1≤1+ax,即ax≥0,其中常数a>0.所以,原不等式等价于即--3分所以,当0<a<1时,所给不等式的解集为{x|0};当a≥1时,所给不等式的解集为{x|x≥0}.--6分(Ⅱ)在区间[0,+∞]上任取x1、x2,使得x1<x2.f(x1)-f(x2)=--a(x1-x2)=-a(x1-x2)=(x1-x2)(-a).--8分(ⅰ)当a≥1时∵<1∴-a<0,又x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2).所以,当a≥1时,函数f(x)在区间上是单调递减函数.--10分(ii)当0<a<1时,在区间上存在两点x1=0,x2=,满足f(x1)=1,f(x2)=1,即f(x1)=f(x2),所以函数f(x)在区间上不是单调函数.综上,当且仅当a≤1时,函数f(x)在区间上是单调函数.--12分(20)本小题主要考查等比数列的概念和基本性质,推理和运算能力,满分12分.解:(Ⅰ)因为{cn+1-pcn}是等比数列,故有(cn+1-pcn)2=(cn+2-pcn+1)(cn-pcn-1),将cn=2n+3n代入上式,得[2n+1+3n+1-p(2n+3n)]2=[2n+2+3n+2-p(2n+1+3n+1)]·[2n+3n-p(2n-1+3n-1)],--3分即[(2-p)2n+(3-p)3n]2=[(2-p)2n+1+(3-p)3n+1][(2-p)2n-1+(3-p)3n-1],整理得(2-p)(3-p)·2n·3n=0,解得p=2或p=3.--6分(Ⅱ)设{an}、{bn}的公比分别为p、q,p≠q,cn=an+bn.为证{cn}不是等比数列只需证≠c1·c3.事实上,=(a1p+b1q)2=p2+q2+2a1b1pq,c1·c3=(a1+b1)(a1p2+b1q2)=p2+q2+a1b1(p2+q2).由于p≠q,p2+q2>2pq,又a1、b1不为零,因此c1·c3,故{cn}不是等比数列.--12分(21)本小题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分.解:(Ⅰ)由图一可得市场售价与时间的函数关系为f(t)=--2分由图二可得种植成本与时间的函数关系为g(t)=(t-150)2+100,0≤t≤300.--4分(Ⅱ)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t)即h(t)=--6分当0≤t≤200时,配方整理得h(t)=-(t-50)2+100,所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t≤300时,配方整理得h(t)=-(t-350)2+100所以,当t=300时,h(t)取得区间[200,300]上的最大值87.5.--10分综上,由100>87.5可知,h(t)在区间[0,300]上可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤矿地质灾害普查制度
- 2026年跨境电商运营实战测试题
- 2026年环境科学与保护知识竞赛试题及答案解析
- 演出流程制度
- 2026年安全员工作实践知识与能力考试题库
- 2026年网络安全与数据保护实务试题
- 2026年注册会计师考前冲刺题财务成本管理与决策
- 2026年电力工程管理师职称考试试题
- 汛前检查制度
- 校园周边环境治理制度
- 四新安全生产培训课件
- 台球厅灭火和应急疏散预案
- DB37∕T 5237-2022 《超低能耗公共建筑技术标准》
- 手术后疼痛评估与护理团体标准
- 光伏公司销售日常管理制度
- CJ/T 510-2017城镇污水处理厂污泥处理稳定标准
- 企业人力资源管理效能评估表
- 2025年行政人事年终总结
- 短暂性脑缺血发作课件
- DB34T 1909-2013 安徽省铅酸蓄电池企业职业病危害防治工作指南
- 优衣库服装设计风格
评论
0/150
提交评论