云南省楚雄市古城二中2026届数学高一下期末综合测试试题含解析_第1页
云南省楚雄市古城二中2026届数学高一下期末综合测试试题含解析_第2页
云南省楚雄市古城二中2026届数学高一下期末综合测试试题含解析_第3页
云南省楚雄市古城二中2026届数学高一下期末综合测试试题含解析_第4页
云南省楚雄市古城二中2026届数学高一下期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省楚雄市古城二中2026届数学高一下期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.办公室装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工任意选择2种,则员工甲和乙选择的植物全不同的概率为:A. B. C. D.2.设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是()A. B.C.是数列中的最大值 D.数列无最小值3.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是,接下来的两项是,再接下来的三项是,依此类推,记此数列为,则()A.1 B.2 C.4 D.84.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A. B. C. D.5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.76.角的终边过点,则等于()A. B. C. D.7.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则A. B.C. D.8.设,,在,,…,中,正数的个数是()A.15 B.16 C.18 D.209.若等差数列和的公差均为,则下列数列中不为等差数列的是()A.(为常数) B.C. D.10.已知向量与的夹角为,,,当时,实数为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.过点且在坐标轴上的截距相等的直线的一般式方程是________.12.数列的前项和为,已知,且对任意正整数,都有,若恒成立,则实数的最小值为________.13.在中,,则______.14.在数列中,是其前项和,若,,则___________.15.各项均为实数的等比数列的前项和为,已知成等差数列,则数列的公比为________.16.在等比数列中,,的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率;(2)丁没被选中的概率.18.同时抛掷两枚骰子,并记下二者向上的点数,求:二者点数相同的概率;两数之积为奇数的概率;二者的数字之和不超过5的概率.19.已知,,,且.(1)若,求的值;(2)设,,若的最大值为,求实数的值.20.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.21.如图,边长为2的正方形中,(1)点是的中点,点是的中点,将分别沿折起,使两点重合于点.求证:(2)当时,求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

从公司提供的4中植物中任意选择2种,求得员工甲和乙共有种选法,再由任选2种有种,得到员工甲和乙选择的植物全不同有种选法,利用古典概型的概率计算公式,即可求解.【详解】由题意,从公司提供绿萝、文竹、碧玉、芦荟4种植物每个员工任意选择2种,则员工甲和乙共有种不同的选法,又从公司提供绿萝、文竹、碧玉、芦荟4种植物中,任选2种,共有种选法,则员工甲和乙选择的植物全不同,共有种不同的选法,所以员工甲和乙选择的植物全不同的概率为,故选A.【点睛】本题主要考查了古典概型及其概率的计算,以及排列、组合的应用,其中解答中认真审题,合理利用排列、组合求得基本事件的个数,利用古典概型的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2、D【解析】

根据题干条件可得到数列>1,0<q<1,数列之和越加越大,故A错误;根据等比数列性质得到进而得到B正确;由前n项积的性质得到是数列中的最大值;从开始后面的值越来越小,但是都是大于0的,故没有最小值.【详解】因为条件:,,,可知数列>1,0<q<1,根据等比数列的首项大于0,公比大于0,得到数列项均为正,故前n项和,项数越多,和越大,故A不正确;因为根据数列性质得到,故B不对;前项之积为,所有大于等于1的项乘到一起,能够取得最大值,故是数列中的最大值.数列无最小值,因为从开始后面的值越来越小,但是都是大于0的,故没有最小值.故D正确.故答案为D.【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的解法,考查了推理能力与计算能力,属于中档题.3、C【解析】

将数列分组:第1组为,第2组为,第3组为,,根据,进而得到数列的2017项为,数列的第2018项为,数列的第2019项为,即可求解.【详解】将所给的数列分组:第1组为,第2组为,第3组为,,则数列的前n组共有项,又由,所以数列的前63组共有2016项,所以数列的2017项为,数列的第2018项为,数列的第2019项为,所以故选:C.【点睛】本题主要考查了等差数列的前n项和公式的应用,其中解答中根据所给数列合理分组,结合等差数列的前n项和求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4、C【解析】由题意,得,设过的抛物线的切线方程为,联立,,令,解得,即,不妨设,由双曲线的定义得,,则该双曲线的离心率为.故选C.5、B【解析】

分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.6、B【解析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.7、D【解析】

由平面向量基本定理和向量运算求解即可【详解】根据题意得:,又,,所以.故选D.【点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础题.8、D【解析】

根据数列的通项公式可判断出数列的正负,然后分析的正负,再由的正负即可确定出,,…,中正数的个数.【详解】当时,,当时,,因为,所以,因为,,所以取等号时,所以均为正,又因为,所以均为正,所以正数的个数是:.故选:D.【点睛】本题考查数列与函数综合应用,着重考查了推理判断能力,难度较难.对于数列各项和的正负,可通过数列本身的单调性周期性进行判断,从而为判断各项和的正负做铺垫.9、D【解析】

利用等差数列的定义对选项逐一进行判断,可得出正确的选项.【详解】数列和是公差均为的等差数列,则,,.对于A选项,,数列(为常数)是等差数列;对于B选项,,数列是等差数列;对于C选项,,所以,数列是等差数列;对于D选项,,不是常数,所以,数列不是等差数列.故选:D.【点睛】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.10、B【解析】

利用平面向量数量积的定义计算出的值,由可得出,利用平面向量数量积的运算律可求得实数的值.【详解】,,向量与的夹角为,,,,解得.故选:B.【点睛】本题考查利用向量垂直求参数,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】

讨论直线过原点和直线不过原点两种情况,分别计算得到答案.【详解】当直线过原点时,设,过点,则,即;当直线不过原点时,设,过点,则,即;综上所述:直线方程为或.故答案为:或.【点睛】本题考查了直线方程,漏解是容易发生的错误.12、【解析】令,可得是首项为,公比为的等比数列,所以,,实数的最小值为,故答案为.13、【解析】

由已知求得,进一步求得,即可求出.【详解】由,得,即,,则,,,则.【点睛】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.14、【解析】

令,可求出的值,令,由可求出的表达式,再检验是否符合时的表达式,由此可得出数列的通项公式.【详解】当时,;当时,.不适合上式,因此,.故答案为:.【点睛】本题考查利用求数列的通项公式,一般利用,求解时还应对是否满足的表达式进行验证,考查运算求解能力,属于中等题.15、【解析】

根据成等差数列得到,计算得到答案.【详解】成等差数列,则故答案为:【点睛】本题考查了等差数列,等比数列的综合应用,意在考查学生对于数列公式的灵活运用.16、【解析】

根据等比数列的性质,可得,即可求解.【详解】由题意,根据等比数列的性质,可得,解得.故答案为:【点睛】本题主要考查了等比数列的性质的应用,其中解答熟记等比数列的性质,准确计算是解答的关键,着重考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定甲被选中的事件数,最后根据古典概型概率公式求概率(2)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定丁没被选中的事件数,最后根据古典概型概率公式求概率.【详解】(1)从甲、乙、丙、丁四个人中选两名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6种基本事件,其中甲被选中包括甲乙,甲丙,甲丁三种基本事件,所以甲被选中的概率为.(2)丁没被选中包括甲乙,甲丙,乙丙三种基本事件,所以丁没被选中的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.18、(1)(2)(3)【解析】

把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,利用列举法求出事件A中包含6个基本事件,由此能求出二者点数相同的概率.记事件B表示“两数之积为奇数”,利用列举法求出事件B中含有9个基本事件,由此能求出两数之积为奇数的概率.记事件C表示“二者的数字之和不超过5”,利用列举法求出事件C中包含的基本事件有10个,由此能求出二者的数字之和不超过5的概率.【详解】解:把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,则事件A中包含6个基本事件,分别为:,,,,,,二者点数相同的概率.记事件B表示“两数之积为奇数”,则事件B中含有9个基本事件,分别为:,,,,,,,,,两数之积为奇数的概率.记事件C表示“二者的数字之和不超过5”,由事件C中包含的基本事件有10个,分别为:,,,,,,,,,,二者的数字之和不超过5的概率.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.19、(1)0(2)【解析】

(1)通过可以算出,移项、两边平方即可算出结果.(2)通过向量的运算,解出,再通过最大值根的分布,求出的值.【详解】(1)通过可以算出,即故答案为0.(2),设,,,即的最大值为;①当时,(满足条件);②当时,(舍);③当时,(舍)故答案为【点睛】当式子中同时出现时,常常可以利用换元法,把用进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.20、(1);(2).【解析】

(1)构造数列等差数列求得的通项公式,再进行求和,再利用裂项相消求得;

(2)由题出现,故考虑用分为偶数和奇数两种情况进行计算.【详解】(1)由得,即,所以是以为首项,1为公差的等差数列,故,故.所以,故.

(2)当为偶数时,,当为奇数时,为偶数,

综上所述,当为偶数时,,当为奇数时,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论