辽宁省抚顺市一中2026届高一数学第二学期期末学业水平测试模拟试题含解析_第1页
辽宁省抚顺市一中2026届高一数学第二学期期末学业水平测试模拟试题含解析_第2页
辽宁省抚顺市一中2026届高一数学第二学期期末学业水平测试模拟试题含解析_第3页
辽宁省抚顺市一中2026届高一数学第二学期期末学业水平测试模拟试题含解析_第4页
辽宁省抚顺市一中2026届高一数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省抚顺市一中2026届高一数学第二学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,成等差数列,,则的形状为()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等边三角形2.在中,,则是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形3.在△ABC中,内角A,B,C的对边分别是a,b,c,若cosB=,=2,且S△ABC=,则b的值为()A.4 B.3 C.2 D.14.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的表面积为()A. B. C. D.5.中,角所对的边分别为,已知向量,,且共线,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形6.若直线:与直线:垂直,则实数().A. B. C.2 D.或27.过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于()A.1 B.5 C.-1 D.-58.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.49.在中,角A,B,C所对的边分别为a,b,c,,,,则等于()A. B. C. D.110.若实数满足,则的最大值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为_____________.12.已知一个扇形的周长为4,则扇形面积的最大值为______.13.已知:,则的取值范围是__________.14.已知,为第二象限角,则________15.已知a,b为常数,若,则______;16.适合条件的角的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为(1)求的值;(2)求的值.18.已知数列为等差数列,是数列的前n项和,且,.(1)求数列的通项公式;(2)令,求数列的前n项和.19.某地区有小学21所,中学14所,现采用分层抽样的方法从这些学校中抽取5所学校,对学生进行视力检查.(1)求应从小学、中学中分别抽取的学校数目;(2)若从抽取的5所学校中抽取2所学校作进一步数据分析:①列出所有可能抽取的结果;②求抽取的2所学校至少有一所中学的概率.20.已知直线和.(1)若,求实数的值;(2)若,求实数的值.21.如图,四边形ABCD是平行四边形,点E,F,G分别为线段BC,PB,AD的中点.(1)证明:EF∥平面PAC;(2)证明:平面PCG∥平面AEF;(3)在线段BD上找一点H,使得FH∥平面PCG,并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据等差中项以及余弦定理即可.【详解】因为,,成等差数列,得为直角三角形为等腰直角三角形,所以选择B【点睛】本题主要考查了等差中项和余弦定理,若为等差数列,则,属于基础题.2、D【解析】

先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【详解】因为,所以所以因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D【点睛】要判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:①角化边:把已知条件转化为只含边的关系,通过因式分解、配方等得到边的对应关系,从而判断三角形形状,②边化角:把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断三角形的形状.3、C【解析】试题分析:根据正弦定理可得,.在中,,.,,.,.故C正确.考点:1正弦定理;2余弦定理.4、B【解析】

先求出长方体的对角线的长度,即得外接球的直径,再求球的表面积得解.【详解】由题得长方体外接球的直径.故选:B【点睛】本题主要考查长方体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.5、D【解析】

由向量共线的坐标表示得一等式,然后由正弦定理化边为角,利用诱导公式得展开后代入原式化简得,分类讨论得解.【详解】∵共线,∴,即,,,整理得,所以或,或或(舍去).∴三角形为直角三角形或等腰三角形.故选:D.【点睛】本题考查三角形形状的判断,考查向量共线的坐标表示,考查正弦定理,两角和的正弦公式,考查三角函数性质.解题时不能随便约分漏解.6、A【解析】试题分析:直线:与直线:垂直,则,.考点:直线与直线垂直的判定.7、D【解析】∵过两点A(4,y),B(2,-3)的直线的倾斜角是135°,∴,解得。选D。8、B【解析】

根据直线和直线平行则斜率相等,故m(m-1)=3m×2,求解即可。【详解】∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或7,经检验,都符合题意,故选B.【点睛】本题属于基础题,利用直线的平行关系,斜率相等求解参数。9、D【解析】

根据题意,由正弦定理得,再把,,代入求解.【详解】由正弦定理,得,所以.故选:D【点睛】本题主要考查了正弦定理的应用,还考查了运算求解的能力,属于基础题.10、B【解析】

根据,将等式转化为不等式,求的最大值.【详解】,,,解得,,的最大值是.故选B.【点睛】本题考查了基本不等式求最值,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】函数的定义域为故答案为12、1【解析】

表示出扇形的面积,利用二次函数的单调性即可得出.【详解】设扇形的半径为,圆心角为,则弧长,,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【点睛】本题考查了弧长公式与扇形的面积计算公式、二次函数的单调性,考查了计算能力,属于基础题.13、【解析】

由已知条件将两个角的三角函数转化为一个角的三角函数,再运用三角函数的值域求解.【详解】由已知得,所以,又因为,所以,解得,所以,故填.【点睛】本题考查三角函数的值域,属于基础题.14、【解析】

先求解,再求解,再利用降幂公式求解即可.【详解】由,又为第二象限角,故,且.又.故答案为:【点睛】本题主要考查了降幂公式的用法等,属于基础题型.15、2【解析】

根据极限存在首先判断出的值,然后根据极限的值计算出的值,由此可计算出的值.【详解】因为,所以,又因为,所以,所以.故答案为:.【点睛】本题考查根据极限的值求解参数,难度较易.16、【解析】

根据三角函数的符号法则,得,从而求出的取值范围.【详解】,的取值范围的解集为.故答案为:【点睛】本题主要考查了三角函数符号法则的应用问题,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

试题分析:(1)根据题意,由三角函数的定义可得与的值,进而可得出与的值,从而可求与的值就,结合两角和正切公式可得答案;(2)由两角和的正切公式,可得出的值,再根据的取值范围,可得出的取值范围,进而可得出的值.由条件得cosα=,cosβ=.∵α,β为锐角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β为锐角,∴0<α+2β<,∴α+2β=18、(1)(2)【解析】

(1)由等差数列可得,求得,即可求得通项公式;(2)由(1),则利用裂项相消法求数列的和即可【详解】解:(1)因为数列是等差数列,且,,则,解得,所以(2)由(1),,所以【点睛】本题考查等差数列的通项公式,考查裂项相消法求数列的和19、(1)3所、2所;(2)①共10种;②【解析】

(1)根据分层抽样的方法,得到分层抽样的比例,即可求解样本中小学与中学抽取的学校数目;(2)①3所小学分别记为;2所中学分别记为,利用列举法,即可求得抽取的2所学校的所有结果;②利用古典概型的概率计算公式,即可求得相应的概率.【详解】(1)学校总数为35所,所以分层抽样的比例为,计算各类学校应抽取的数目为:,故从小学、中学中分别抽取的学校数目为3所、2所.(2)①3所小学分别记为;2所中学分别记为应抽取的2所学校的所有结果为:共10种.②设“抽取的2所学校至少有一所中学”作为事件.其结果共有7种,所以概率为.【点睛】本题主要考查了分层抽样的应用,以及古典概型及其概率的计算,其中解答中认真审题,合理利用列举法求得基本事件的总数是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1);(2).【解析】

(1)借助两直线垂直的充要条件建立方程求解;(2)借助两直线平行充要条件建立方程求解.【详解】(1)若,则.(2)若,则或2.经检验,时,与重合,时,符合条件,∴.【点晴】解析几何是运用代数的方法和知识解决几何问题一门学科,是数形结合的典范,也是高中数学的重要内容和高考的热点内容.解答本题时充分运用和借助题设条件中的垂直和平行条件,建立了含参数的直线的方程,然后再运用已知条件进行分析求解,从而将问题进行转化和化归,进而使问题获解.如本题的第一问中求参数的值时,是直接运用垂直的充要条件建立方程,这是方程思想的运用;再如第二问中求参数的值时也是运用了两直线平行的条件,但要注意的是这个条件不是两直线平行的充要条件,所以一定代回进行检验,这也是学生经常会出现错误的地方.21、(1)见解析(2)见解析(3)见解析【解析】

(1)证明,EF∥平面PAC即得证;(2)证明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得证;(3)设AE,GC与BD分别交于M,N两点,证明N点为所找的H点.【详解】(1)证明:∵E、F分别是BC,BP中点,∴,∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵E、G分别是BC、AD中点,∴AE∥CG,∵AE⊄平面P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论