河北唐山市2026届高一下数学期末综合测试试题含解析_第1页
河北唐山市2026届高一下数学期末综合测试试题含解析_第2页
河北唐山市2026届高一下数学期末综合测试试题含解析_第3页
河北唐山市2026届高一下数学期末综合测试试题含解析_第4页
河北唐山市2026届高一下数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北唐山市2026届高一下数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在中,为线段上一点,且,若,则()A. B. C. D.2.若且,则下列不等式成立的是()A. B. C. D.3.设在中,角所对的边分别为,若,则的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定4.已知数列满足:,,则该数列中满足的项共有()项A. B. C. D.5.一支由学生组成的校乐团有男同学48人,女同学36人,若用分层抽样的方法从该乐团的全体同学中抽取21人参加某项活动,则抽取到的男同学人数为()A.10 B.11 C.12 D.136.在棱长为1的正方体中,点在线段上运动,则下列命题错误的是()A.异面直线和所成的角为定值 B.直线和平面平行C.三棱锥的体积为定值 D.直线和平面所成的角为定值7.函数的最小正周期是A. B. C. D.8.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.9.已知函数f(x)=x,x≥0,|x2A.a<0 B.0<a<1 C.a>1 D.a≥110.设非零向量,满足,则()A. B. C.// D.二、填空题:本大题共6小题,每小题5分,共30分。11.空间一点到坐标原点的距离是_______.12.在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,,则_________.13.数列通项公式,前项和为,则________.14.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.15.在等差数列中,,当最大时,的值是________.16.已知等边,为中点,若点是所在平面上一点,且满足,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设递增数列共有项,定义集合,将集合中的数按从小到大排列得到数列;(1)若数列共有4项,分别为,,,,写出数列的各项的值;(2)设是公比为2的等比数列,且,若数列的所有项的和为4088,求和的值;(3)若,求证:为等差数列的充要条件是数列恰有7项;18.设函数的定义域为R,当时,,且对任意实数m、n,有成立,数列满足,且.(1)求的值;(2)若不等式对一切都成立,求实数k的最大值.19.己知角的终边经过点.求的值;求的值.20.已知函数.(1)求的值;(2)设,求的值.21.在平面直角坐标系中,已知向量,.(1)求证:且;(2)设向量,,且,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

首先,由已知条件可知,再有,这样可用表示出.【详解】∵,∴,,∴,∴.故选C.【点睛】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.2、D【解析】

利用不等式的性质对四个选项逐一判断.【详解】选项A:,符合,但不等式不成立,故本选项是错误的;选项B:当符合已知条件,但零没有倒数,故不成立,故本选项是错误的;选项C:当时,不成立,故本选项是错误的;选项D:因为,所以根据不等式的性质,由能推出,故本选项是正确的,因此本题选D.【点睛】本题考查了不等式的性质,结合不等式的性质,举特例是解决这类问题的常见方法.3、B【解析】

利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.【详解】因为,所以由正弦定理可得,,所以,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题.弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.4、C【解析】

利用累加法求出数列的通项公式,然后解不等式,得出符合条件的正整数的个数,即可得出结论.【详解】,,,解不等式,即,即,,则或.故选:C.【点睛】本题考查了数列不等式的求解,同时也涉及了利用累加法求数列通项,解题的关键就是求出数列的通项,考查运算求解能力,属于中等题.5、C【解析】

先由男女生总数以及抽取的人数确定抽样比,由男生总人数乘以抽样比即可得出结果.【详解】用分层抽样的方法从校乐团中抽取人,所得抽样比为,因此抽取到的男同学人数为人.故选C【点睛】本题主要考查分层抽样,熟记概念即可,属于常考题型.6、D【解析】

结合条件和各知识点对四个选项逐个进行分析,即可得解.【详解】,在棱长为的正方体中,点在线段上运动易得平面,平面,,故这两个异面直线所成的角为定值,故正确,直线和平面平行,所以直线和平面平行,故正确,三棱锥的体积还等于三棱锥的体积,而平面为固定平面且大小一定,,而平面点到平面的距离即为点到该平面的距离,三棱锥的体积为定值,故正确,由线面夹角的定义,令与的交点为,可得即为直线和平面所成的角,当移动时这个角是变化的,故错误故选【点睛】本题考查了异面直线所成角的概念、线面平行及线面角等,三棱锥的体积的计算可以进行顶点轮换及线面平行时,直线上任意一点到平面的距离都相等这一结论,即等体积法的转换.7、D【解析】

的最小正周期为,求解得到结果.【详解】由解析式可知,最小正周期本题正确选项:【点睛】本题考查的性质,属于基础题.8、B【解析】

根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.9、B【解析】

令g(x)=0得f(x)=a,再利用函数的图像分析解答得到a的取值范围.【详解】令g(x)=0得f(x)=a,函数f(x)的图像如图所示,当直线y=a在x轴和直线x=1之间时,函数y=f(x)的图像与直线y=a有四个零点,所以0<a<1.故选:B【点睛】本题主要考查函数的图像和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平,属于中档题.10、A【解析】

根据与的几何意义可以判断.【详解】由的几何意义知,以向量,为邻边的平行四边形为矩形,所以.故选:A.【点睛】本题考查向量的加减法的几何意义,同时,本题也可以两边平方,根据数量积的运算推出结论.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接运用空间两点间距离公式求解即可.【详解】由空间两点距离公式可得:.【点睛】本题考查了空间两点间距离公式,考查了数学运算能力.12、【解析】

用表示出,由对应相等即可得出.【详解】因为,所以解得得.【点睛】本题主要考查了平面向量的基本定理,以及向量的三角形法则,平面上任意不共线的一组向量可以作为一组基底.13、1【解析】

利用裂项求和法求出,取极限进而即可求解.【详解】,故,所以,故答案为:1【点睛】本题考查了裂项求和法以及求极限值,属于基础题.14、1【解析】

利用线面平行的性质定理来进行解答.【详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【点睛】本题考查线面平行的性质定理,是基础题.15、6或7【解析】

利用等差数列的前项和公式,由,可以得到和公差的关系,利用二次函数的性质可以求出最大时,的值.【详解】设等差数列的公差为,,,所以,因为,,所以当或时,有最大值,因此当的值是6或7.【点睛】本题考查了等差数列的前项和公式,考查了等差数列的前项和最大值问题,运用二次函数的性质是解题的关键.16、0【解析】

利用向量加、减法的几何意义可得,再利用向量数量积的定义即可求解.【详解】根据向量减法的几何意义可得:,即,所以.故答案为:0【点睛】本题考查了向量的加、减法的几何意义以及向量的数量积,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,,,;(2),;(3)证明见解析;【解析】

(1)根据题意从小到大计算中的值即可.(2)易得数列的所有项的和等于中的每个项重复加了次,再根据等比数列求和即可.(3)分别证明当时,若为等差数列则数列恰有7项以及当数列恰有7项证明为等差数列即可.【详解】(1)易得当,,,时,,,,,.(2)若是公比为2的等比数列,且,则数列的所有项的和等于中每一项重复加了次,故.即,又,故,易得随着的增大而增大.当时,当时,当时,故,此时.(3)证明:先证明充分性:若,且为等差数列,不妨设,则数列也为等差数列为的等差数列.且最小值为,最大值为.故数列恰有7项.再证明必要性:若数列恰有7项.则因为.故的7项分别为.又,可得,即.同理有,故为等差数列.综上可知,若,则为等差数列的充要条件是数列恰有7项【点睛】本题主要考查了数列综合运用,需要根据题意分析与的关系,将中的通项用中的项表达,再计算即可.同时也考查了推理证明的能力.属于难题.18、(1)(2)【解析】

(1)首先令,得:,根据得到,即是以,的等差数列,再计算即可.(2)将题意转化为,设,判断其单调性,求出最小值即可得到答案.【详解】令,得:,.所以.因为,所以.所以,.所以是以,的等差数列.所以,.(2)因为恒成立.即恒成立.设,知,且,,即,故为关于的增函数,.所以,的最大值为.【点睛】本题主要考查数列与函数的综合,利用函数的单调性是解题的关键,属于难题.19、(1)(2)【解析】

(1)直接利用三角函数的定义的应用求出结果.(2)利用同角三角函数关系式的变换和诱导公式的应用求出结果.【详解】(1)由题意,由角的终边经过点,根据三角函数的定义,可得.由知,则.【点睛】本题主要考查了三角函数关系式的恒等变换,同角三角函数的关系式的变换,诱导公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.20、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论