版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届甘肃省白银市第九中学数学高一下期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知样本数据为3,1,3,2,3,2,则这个样本的中位数与众数分别为()A.2,3 B.3,3 C.2.5,3 D.2.5,22.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球4.若,则下列不等式中不正确的是().A. B. C. D.5.设平面向量,,若,则等于()A. B. C. D.6.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则()A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线7.在中,,,则的形状是()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定8.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为A.16 B.24 C.32 D.489.在中,已知其面积为,则=()A. B. C. D.10.表示不超过的最大整数,设函数,则函数的值域为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的半径为6,圆心角为,则扇形的弧长为______.12.过点作圆的切线,则切线的方程为_____.13.在中,,,,点在线段上,若,则的面积是_____.14.已知向量a=1,2,b=2,-2,c=15.函数是定义域为R的奇函数,当时,则的表达式为________.16.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.根据频率分布直方图,估计这50名同学的数学平均成绩;用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.18.已知函数的图象向左平移个单位长度后与函数图象重合.(1)求和的值;(2)若函数,求函数的单调递减区间及图象的对称轴方程.19.已知向量,函数,且当,时,的最小值为.(1)求的值,并求的单调递增区间;(2)先将函数的图象上所有点的横坐标缩小到原来的倍(纵坐标不变),再将所得图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.20.已知直线l的方程为.(1)求过点且与直线l垂直的直线方程;(2)求直线与的交点,且求这个点到直线l的距离.21.已知向量,的夹角为120°,且||=2,||=3,设32,2.(Ⅰ)若⊥,求实数k的值;(Ⅱ)当k=0时,求与的夹角θ的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
将样本数据从小到大排列即可求得中位数,再找出出现次数最多的数即为众数.【详解】将样本数据从小到大排列:1,2,2,3,3,3,中位数为,众数为3.故选:C.【点睛】本题考查了中位数和众数的概念,属于基础题.2、B【解析】设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.3、C【解析】
从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.4、D【解析】
先判断出的大小关系,然后根据不等式的性质以及基本不等式逐项判断.【详解】由,得,,,故D不正确,C正确;,,,故A正确;,,,取等号时,故B正确,故选D.【点睛】本题考查利用不等式性质以及基本不等式判断不等式是否成立,难度一般.注意使用基本不等式计算最值时,取等号的条件一定要记得添加.5、D【解析】分析:由向量垂直的条件,求解,再由向量的模的公式和向量的数量积的运算,即可求解结果.详解:由题意,平面向量,且,所以,所以,即,又由,所以,故选D.点睛:本题主要考查了向量的数量积的运算和向量模的求解,其中解答中熟记平面向量的数量积的运算公式和向量模的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】
利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角性.7、C【解析】
利用余弦定理求出,再利用余弦定理求得的值,即可判断三角形的形状.【详解】在中,,解得:;∵,∵,,∴是直角三角形.故选:C.【点睛】本题考查余弦定理的应用、三角形形状的判定,考查逻辑推理能力和运算求解能力.8、B【解析】
根据分层抽样各层在总体的比例与在样本的比例相同求解.【详解】因为分层抽样总体和各层的抽样比例相同,所以各层在总体的比例与在样本的比例相同,所以样本中乙类型饮品的数量为.故选B.【点睛】本题考查分层抽样,依据分层抽样总体和各层的抽样比例相同.9、C【解析】或(舍),故选C.10、D【解析】
由已知可证是奇函数,是互为相反数,对是否为正数分类讨论,即可求解.【详解】的定义域为,,,是奇函数,设,若是整数,则,若不是整数,则.的值域是.故选:D.【点睛】本题考查函数性质的应用,考查对新函数定义的理解,考查分类讨论思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先将角度化为弧度,再根据弧长公式求解.【详解】因为圆心角,所以弧长.故答案为:【点睛】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.12、或【解析】
求出圆的圆心与半径分别为:,,分别设出直线斜率存在与不存在情况下的直线方程,利用点到直线的距离等于半径即可得到答案.【详解】由圆的一般方程得到圆的圆心和半径分别为;,;(1)当过点的切线斜率不存在时,切线方程为:,此时圆心到直线的距离,故不与圆相切,不满足题意;(2)当过点的切线的斜率存在时,设切线方程为:,即为;由于直线与圆相切,所以圆心到切线的距离等于半径,即,解得:或,所以切线的方程为或;综述所述:切线的方程或【点睛】本题考查过圆外一点求圆的切线方程,解题关键是设出切线方程,利用圆心到切线的距离等于半径得到关系式,属于中档题.13、【解析】
过作于,设,运用勾股定理和三角形的面积公式,计算可得所求值.【详解】过作于,设,,,,又,可得,即有,可得的面积为.故答案为.【点睛】本题考查解三角形,考查勾股定理的运用,以及三角形的面积公式,考查化简运算能力,属于基础题.14、1【解析】
由两向量共线的坐标关系计算即可.【详解】由题可得2∵c//∴4λ-2=0故答案为1【点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.15、【解析】试题分析:当时,,,因是奇函数,所以,是定义域为R的奇函数,所以,所以考点:函数解析式、函数的奇偶性16、2【解析】
根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
⑴用频率分布直方图中的每一组数据的平均数乘以对应的概率并求和即可得出结果;⑵首先可通过分层抽样确定6人中在分数段以及分数段中的人数,然后分别写出所有的基本事件以及满足题意中“两名同学数学成绩均在中”的基本事件,最后两者相除,即可得出结果.【详解】⑴由频率分布表,估计这50名同学的数学平均成绩为:;⑵由频率分布直方图可知分数低于115分的同学有人,则用分层抽样抽取6人中,分数在有1人,用a表示,分数在中的有5人,用、、、、表示,则基本事件有、、、、、、、、、、、、、、,共15个,满足条件的基本事件为、、、、、、、、、,共10个,所以这两名同学分数均在中的概率为.【点睛】本题考查了频率分布直方图以及古典概型的相关性质,解决本题的关键是对频率分布直方图的理解以及对古典概型概率的计算公式的使用,考查推理能力,是简单题.18、(1),;(2)减区间为,对称轴方程为【解析】
(1)先根据平移后周期不变求得,再根据三角函数的平移方法求得即可.(2)根据(1)中,代入可得,利用辅助角公式求得,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数的图象向左平移个单位长度后与函数图象重合,所以.所以,因为,所以.(2)由(1),,所以,.令,解得所以函数的单调递减区间为.令,可得图象的对称轴方程为.【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.19、(1),;(2).【解析】
(1)运用向量的数量积运算和辅助角公式化简,求解和求其单调区间;(2)根据图像的平移和函数的对称轴求解.【详解】(1)函数,得.即,由题意得,得所以,函数的单调增区间为.(2)由题意,,又,得解得:或即或或故所有根之和为.【点睛】本题考查正弦型函数的值域、单调性和对称性,属于基础题.20、(1)(2)1【解析】
(1)与l垂直的直线方程可设为,再将点代入方程可得;(2)先求两直线的交点,再用点到直线的距离公式可得点到直线l的距离.【详解】解:(1)设与直线垂直的直线方程为,把代入,得,解得,∴所求直线方程为.(2)解方程组得∴直线与的交点为,点到直线的距离.【点睛】本题考查两直线垂直时方程的求法和点到直线的距离公式.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用⊥,结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年文学鉴赏与批评题库古代文学与现代文学对比
- 2026年程序员面试笔试题目及答案编程逻辑与算法应用
- 2026年法律案例分析与应用模拟测试题
- 北京市海淀清华附中2026届高一下生物期末联考试题含解析
- 2026年食品药品安全知识考试题及答案公布
- 2026年计算机二级C语言编程基础与算法应用题库
- 2026年办公软件高级应用与操作技巧测试
- 2026年电力工程建设项目管理题库
- 2026年软件工程师进阶面试全模拟题
- 2026年历史常识与文化知识考试题集
- 2025年煤制天然气行业研究报告及未来发展趋势预测
- 外伤性脑出血病例分析与管理流程
- 食堂设计投标方案(3篇)
- 产前筛查设备管理制度
- 初级意大利语教程课件
- DB13-T2321-2015-盐碱地高粱咸水直灌栽培技术规程-河北省
- 木工机械日常点检表
- 市域治理现代化的培训课件
- 专家解析:渲染,烘托等的区别课件
- 东方希望(三门峡)铝业有限公司煤焦油脱水技改项目环评报告
- 20S517 排水管道出水口
评论
0/150
提交评论