2026届广东省茂名市五校联考高一数学第二学期期末统考试题含解析_第1页
2026届广东省茂名市五校联考高一数学第二学期期末统考试题含解析_第2页
2026届广东省茂名市五校联考高一数学第二学期期末统考试题含解析_第3页
2026届广东省茂名市五校联考高一数学第二学期期末统考试题含解析_第4页
2026届广东省茂名市五校联考高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省茂名市五校联考高一数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知非零向量、,“函数为偶函数”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件2.已知的三个内角所对的边分别为.若,则该三角形的形状是()A.等边三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形3.已知向量与的夹角为,,,当时,实数为()A. B. C. D.4.函数的简图是()A. B. C. D.5.已知函数,若对于恒成立,则实数的取值范围为()A. B. C. D.6.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是(),为预测人口数,为初期人口数,为预测期内年增长率,为预测期间隔年数.如果在某一时期有,那么在这期间人口数A.呈下降趋势 B.呈上升趋势 C.摆动变化 D.不变7.若,则下列不等式成立的是()A. B.C. D.8.已知,的线性回归直线方程为,且,之间的一组相关数据如下表所示,则下列说法错误的为A.变量,之间呈现正相关关系 B.可以预测,当时,C. D.由表格数据可知,该回归直线必过点9.下列极限为1的是()A.(个9) B.C. D.10.设集合,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的值为__________.12.已知线段上有个确定的点(包括端点与).现对这些点进行往返标数(从…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点上标,称为点,然后从点开始数到第二个数,标上,称为点,再从点开始数到第三个数,标上,称为点(标上数的点称为点),……,这样一直继续下去,直到,,,…,都被标记到点上,则点上的所有标记的数中,最小的是_______.13.已知向量a=(2,-4),b=(-3,-4),则向量a与14.函数的单调递减区间是______.15.在中,内角,,的对边分别为,,.若,,成等比数列,且,则________.16.已知直线与相互垂直,且垂足为,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有一款手机,每部购买费用是5000元,每年网络费和电话费共需1000元;每部手机第一年不需维修,第二年维修费用为100元,以后每一年的维修费用均比上一年增加100元.设该款手机每部使用年共需维修费用元,总费用元.(总费用购买费用网络费和电话费维修费用)(1)求函数、的表达式:(2)这款手机每部使用多少年时,它的年平均费用最少?18.已知函数.(1)求的单调递增区间;(2)求不等式的解集.19.如图,直三棱柱中,,,,,为垂足.(1)求证:(2)求三棱锥的体积.20.已知集合,数列是公比为的等比数列,且等比数列的前三项满足.(1)求通项公式;(2)若是等比数列的前项和,记,试用等比数列求和公式化简(用含的式子表示)21.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据,求出向量的关系,再利用必要条件和充分条件的定义,即可判定,得到答案.【详解】由题意,函数,又为偶函数,所以,则,即,可得,所以,若,则,所以,则,所以函数是偶函数,所以“函数为偶函数”是“”的充要条件.故选C.【点睛】本题主要考查了向量的数量积的运算,函数奇偶性的定义及其判定,以及充分条件和必要条件的判定,着重考查了推理与运算能力,属于基础题.2、B【解析】

利用三角形的内角关系及三角变换公式得到,从而得到,此三角形的形状可判断.【详解】因为,故,整理得到,所以,因,所以即,故为等腰三角形,故选B.【点睛】本题考查两角和、差的正弦,属于基础题,注意角的范围的讨论.3、B【解析】

利用平面向量数量积的定义计算出的值,由可得出,利用平面向量数量积的运算律可求得实数的值.【详解】,,向量与的夹角为,,,,解得.故选:B.【点睛】本题考查利用向量垂直求参数,考查计算能力,属于基础题.4、D【解析】

变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.5、A【解析】

首先设,将题意转化为,即可,再分类讨论求出,解不等式组即可.【详解】,恒成立,等价于,恒成立.令,对称轴为.即等价于,即可.当时,得到,解得:.当时,得到,解得:.当时,得到,解得:.综上所述:.故选:A【点睛】本题主要考查二次不等式的恒成立问题,同时考查了二次函数的最值问题,分类讨论是解题的关键,属于中档题.6、A【解析】

可以通过与之间的大小关系进行判断.【详解】当时,,所以,呈下降趋势.【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.7、D【解析】

取特殊值检验,利用排除法得答案。【详解】因为,则当时,故A错;当时,故B错;当时,,故C错;因为且,所以故选D.【点睛】本题考查不等式的基本性质,属于简单题。8、C【解析】

A中,根据线性回归直线方程中回归系数0.82>0,判断x,y之间呈正相关关系;B中,利用回归方程计算x=5时的值即可预测结果;C中,计算、,代入回归直线方程求得m的值;D中,由题意知m=1.8时求出、,可得回归直线方程过点(,).【详解】已知线性回归直线方程为0.82x+1.27,0.82>0,所以变量x,y之间呈正相关关系,A正确;计算x=5时,0.82×5+1.27=5.37,即预测当x=5时y=5.37,B正确;(0+1+2+3)=1.5,(0.8+m+3.1+4.3),代入回归直线方程得0.82×1.5+1.27,解得m=1.8,∴C错误;由题意知m=1.8时,1.5,2.5,所以回归直线方程过点(1.5,2.5),D正确.故选C.【点睛】本题考查了线性回归方程的概念与应用问题,是基础题.9、A【解析】

利用极限的运算逐项求解判断即可【详解】对于A项,极限为1,对于B项,极限不存在,对于C项,极限为1.对于D项,,故选:A.【点睛】本题考查的极限的运算及性质,准确计算是关键,是基础题10、B【解析】

先求得集合,再结合集合的交集的概念及运算,即可求解.【详解】由题意,集合,所以.故选:B.【点睛】本题主要考查了集合的交集的运算,其中解答中正确求解集合B,结合集合的交集的概念与运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用诱导公式化简求值.【详解】,故答案为:.【点睛】本题考查诱导公式的应用,属于基础题.12、【解析】

将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,则,令,即可得.【详解】依照题意知,标有2的是1+2,标有3的是1+2+3,……,标有2019的是1+2+3+……+2019,将将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,,令,,解得,故点上的所有标记的数中,最小的是3.【点睛】本题主要考查利用合情推理,分析解决问题的能力.意在考查学生的逻辑推理能力,13、5【解析】

先求出a⋅b,再求【详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【点睛】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y14、【解析】

求出函数的定义域,结合复合函数求单调性的方法求解即可.【详解】由,解得令,则函数在区间上单调递减,在区间上单调递增函数在定义域内单调递增函数的单调递减区间是故答案为:【点睛】本题主要考查了复合函数的单调性,属于中档题.15、【解析】

A,B,C是三角形内角,那么,代入等式中,进行化简可得角A,C的关系,再由,,成等比数列,根据正弦定理,将边的关系转化为角的关系,两式相减可得关于的方程,解方程即得.【详解】因为,所以,所以.因为,,成等比数列,所以,所以,则,整理得,解得.【点睛】本题考查正弦定理和等比数列运用,有一定的综合性.16、【解析】

先由两直线垂直,可求出的值,将垂足点代入直线的方程可求出的点,再将垂足点代入直线的方程可求出的值,由此可计算出的值.【详解】,,解得,直线的方程为,即,由于点在直线上,,解得,将点的坐标代入直线的方程得,解得,因此,.故答案为:.【点睛】本题考查了由两直线垂直求参数,以及由两直线的公共点求参数,考查推理能力与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)这款手机使用年时它的年平均费用最少【解析】

(1)第年的维修费用为,根据等差数列求和公式可求得;将加上购买费用和年的网络费和电话费总额即可得到;(2)平均费用,利用基本不等式可求得最小值,根据取等条件可求得的取值.【详解】(1)则(2)设每部手机使用年的平均费用为则当,即时,这款手机使用年时它的年平均费用最少【点睛】本题考查构造合适的函数模型解决实际问题,涉及到函数最值的求解问题;解决本题中最值问题的关键是能够得到符合基本不等式的形式,利用基本不等式求得和的最小值.18、(1),;(2),【解析】

(1)由余弦函数单调区间的求法,解不等式即可得解;(2)解三角不等式即可得解.【详解】解:解:(1)令,,解得,,故的单调递增区间为,.(2)因为,所以,即,所以,,解得,.故不等式的解集为,.【点睛】本题考查了余弦函数单调区间的求法,重点考查了三角不等式的解法,属基础题.19、(1)见证明;(2)【解析】

(1)先证得平面,由此证得,结合题意所给已知条件,证得平面,从而证得.(2)首先证得平面,由计算出三棱锥的体积.【详解】(1)证明:,∴,又,从而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【点睛】本小题主要考查线线垂直的证明,考查线面垂直的判定定理的运用,考查三棱锥体积的求法,属于中档题.20、(1)(2)【解析】

(1)观察式子特点可知,只有2,4,8三项符合等比数列特征,再根据题设条件求解即可;(2)根据等比数列通项公式表示出,再采用分组求和法化简的表达式即可【详解】(1)由题可知,只有2,4,8三项符合等比数列特征,又,故,故,;(2),,所以【点睛】本题考查等比数列通项公式的求法,等比数列前项和公式的用法,分组求和法的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论