2026届广东省珠海市金湾区外国语学校数学高一下期末学业质量监测模拟试题含解析_第1页
2026届广东省珠海市金湾区外国语学校数学高一下期末学业质量监测模拟试题含解析_第2页
2026届广东省珠海市金湾区外国语学校数学高一下期末学业质量监测模拟试题含解析_第3页
2026届广东省珠海市金湾区外国语学校数学高一下期末学业质量监测模拟试题含解析_第4页
2026届广东省珠海市金湾区外国语学校数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省珠海市金湾区外国语学校数学高一下期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,成等差数列,,则的形状为()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等边三角形2.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.43.点M(4,m)关于点N(n,-3)的对称点为P(6,-9)则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=54.如图,函数的图像是()A. B.C. D.5.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm6.某林区改变植树计划,第一年植树增长率200%,以后每年的植树增长率都是前一年植树增长率的12,若成活率为100%,经过4A.14 B.454 C.67.在△中,角,,所对的边分别为,,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知平面四边形满足,,,则的长为()A.2 B. C. D.9.已知是边长为4的等边三角形,为平面内一点,则的最小值是()A. B. C. D.10.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为()A.8 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前项和为,若,则_____12.如图,在内有一系列的正方形,它们的边长依次为,若,,则所有正方形的面积的和为___________.13.__________.14.从分别写有1,2,3,4,5的五张卡片中,任取两张,这两张卡片上的数字之差的绝对值等于1的概率为________.15.已知扇形的圆心角为,半径为,则扇形的弧长为______.16.已知数列前项和,则该数列的通项公式______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知公差不为零的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求.18.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82848589798091897974乙班:90768681848786828583(1)求两个样本的平均数;(2)求两个样本的方差和标准差;(3)试分析比较两个班的学习情况.19.已知函数,,(,为常数).(1)若方程有两个异号实数解,求实数的取值范围;(2)若的图像与轴有3个交点,求实数的取值范围;(3)记,若在上单调递增,求实数的取值范围.20.在三棱柱中,平面ABC,,,D,E分别为AB,中点.(Ⅰ)求证:平面;(Ⅱ)求证:四边形为平行四边形;(Ⅲ)求证:平面平面.21.在中,角,,所对的边为,,,向量与向量共线.(1)若,求的值;(2)若为边上的一点,且,若为的角平分线,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据等差中项以及余弦定理即可.【详解】因为,,成等差数列,得为直角三角形为等腰直角三角形,所以选择B【点睛】本题主要考查了等差中项和余弦定理,若为等差数列,则,属于基础题.2、B【解析】

过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.3、D【解析】因为点M,P关于点N对称,所以由中点坐标公式可知.4、B【解析】

根据的取值进行分类讨论,去掉中绝对值符号,转化为分段函数,利用正弦函数的图象即可得解.【详解】当时,;当时,.因此,函数的图象是B选项中的图象.故选:B.【点睛】本题考查正切函数与正弦函数的图象,去掉绝对值是关键,考查分类讨论思想的应用,属于中等题.5、B【解析】

先根据题意确定的值,再由余弦定理可直接求得的值.【详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题.6、B【解析】

由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为12n-2,则第n【详解】由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为1则第n年的林区的树木数量为an∴a1=3a0,a因此,经过4年后,林区的树木量是原来的树木量的454【点睛】本题考查数列的性质和应用,解题的关键在于建立数列的递推关系式,然后逐项进行计算,考查分析问题和解决问题的能力,属于中等题.7、C【解析】

由正弦定理分别检验问题的充分性和必要性,可得答案.【详解】解:充分性:在△中,由,可得,所以,故充分性成立;必要性:在△中,由及正弦定理,可得,可得,,故,必要性成立;故可得:在△中,角,,所对的边分别为,,,则“”是“”的充分必要条件,故选C.【点睛】本题主要考查充分条件、必要条件的判断,相对不难,注意正弦定理的灵活运用.8、B【解析】

先建系,再结合两点的距离公式、向量的数量积及模的运算,求解即可得解.【详解】解:建立如图所示的平面直角坐标系,则,设,由,则,所以,又,所以,,即,故选:B.【点睛】本题考查了两点的距离公式,重点考查了向量的数量积运算及模的运算,属中档题.9、A【解析】

建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解.【详解】由题意,以中点为坐标原点,建立如图所示的坐标系,则,设,则,所以,所以当时,取得最小值为,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】

分别讨论当圆柱的高为4时,当圆柱的高为2时,求出圆柱轴截面面积即可得解.【详解】解:当圆柱的高为4时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,当圆柱的高为2时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,综上所述,圆柱的轴截面面积为,故选:B.【点睛】本题考查了圆柱轴截面面积的求法,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】

利用等差数列前项和公式能求出的值.【详解】解:∵等差数列的前项和为,若,

故答案为:.【点睛】本题考查等差数列前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.12、【解析】

根据题意可知,可得,依次计算,,不难发现:边长依次为,,,,构成是公比为的等比数列,正方形的面积:依次,,不难发现:边长依次为,,,,正方形的面积构成是公比为的等比数列.利用无穷等比数列的和公式可得所有正方形的面积的和.【详解】根据题意可知,可得,依次计算,,是公比为的等比数列,正方形的面积:依次,,边长依次为,,,,正方形的面积构成是公比为的等比数列.所有正方形的面积的和.故答案为:【点睛】本题考查了无穷等比数列的和公式的运用.利用边长关系建立等式,找到公比是解题的关键.属于中档题.13、【解析】

在分式的分子和分母上同时除以,然后利用极限的性质来进行计算.【详解】,故答案为:.【点睛】本题考查数列极限的计算,解题时要熟悉一些常见的极限,并充分利用极限的性质来进行计算,考查计算能力,属于基础题.14、【解析】

基本事件总数n,利用列举法求出这两张卡片上的数字之差的绝对值等于1包含的基本事件有4种情况,由此能求出这两张卡片上的数字之差的绝对值等于1的概率.【详解】从分别写有1,2,3,4,5的五张卡片中,任取两张,基本事件总数n,这两张卡片上的数字之差的绝对值等于1包含的基本事件有:(1,2),(2,3),(3,4),(4,5),共4种情况,∴这两张卡片上的数字之差的绝对值等于1的概率为p.故答案为.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.15、9【解析】

由扇形的弧长公式运算可得解.【详解】解:由扇形的弧长公式得:,故答案为9.【点睛】本题考查了扇形的弧长,属基础题.16、【解析】

由,n≥2时,两式相减,可得{an}的通项公式;【详解】∵Sn=2n2(n∈N*),∴n=1时,a1=S1=2;n≥2时,an=Sn﹣=4n﹣2,a1=2也满足上式,∴an=4n﹣2故答案为【点睛】本题考查数列的递推式,考查数列的通项,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)利用等差等比基本公式,计算数列的通项公式;(2)利用裂项相消法求和.试题解析:(1)设公差为,因为,,成等数列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.18、(1),;(2),,;(3)乙班的总体学习情况比甲班好【解析】试题分析:每组样本数据有10个,求样本的平均数利用平均数公式,10个数的平均数等于这10个数的和除以10;比较平均分的大小可以看出两个班学生平均水平的高低,求样本的方差只需使用方差公式,求这10个数与平均数的差的平方方和再除以10;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定。试题解析:(1)=×(82+1+85+89+79+80+91+89+79+74)=83.2,=×(90+76+86+81+1+87+86+82+85+83)=1.(2)=×[(82-83.2)2+(1-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,=[(90-1)2+(76-1)2+(86-1)2+(81-1)2+(1-1)2+(87-1)2+(86-1)2+(82-1)2+(85-1)2+(83-1)2]=13.2,则s甲=≈5.13,s乙=≈3.2.(3)由于,则甲班比乙班平均水平低.由于,则甲班没有乙班稳定.所以乙班的总体学习情况比甲班好【点睛】怎样求样本的平均数,n个数的平均数等于这n个数的和除以n;比较平均数的大小可以看出两个样本平均水平的高低,怎样求样本的方差,就是求这n个数与平均数的差的平方方和再除以n;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定。19、(1)(2)(3)或【解析】

(1)由题意,可知只要,即可使得方程有两个异号的实数解,得到答案;(2)由题意,得,则,再由的图象与轴由3个交点,列出相应的条件,即可求解.(3)由题意得,分类讨论确定函数的单调性,即可得到答案.【详解】由题可得,,与轴有一个交点;与有两个交点综上可得:实数的取值范围或【点睛】本题主要考查了函数与方程的综合应用,以及分段函数的性质的综合应用,其中解答中认真审题,合理分类讨论及利用函数的基本性质求解是解答的关键,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及分类讨论思想和转化思想的应用.20、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】

(Ⅰ)只需证明,,即可得平面;(Ⅱ)可得四边形为平行四边形,,,即可得四边形为平行四边形;(Ⅲ)易得平面,即可得平面平面.【详解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分别为、的中点,∴,,即四边形为平行四边形,∴,,∴四边形为平行四边形.(Ⅲ)∵,为中点,∴,又∵,且,∴平面,而平面,∴平面平面.【点睛】本题考查了空间点、线、面位置关系,属于基础题.21、(1)32;(2)【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论