2026届河北省枣强县枣强中学高一下数学期末达标检测试题含解析_第1页
2026届河北省枣强县枣强中学高一下数学期末达标检测试题含解析_第2页
2026届河北省枣强县枣强中学高一下数学期末达标检测试题含解析_第3页
2026届河北省枣强县枣强中学高一下数学期末达标检测试题含解析_第4页
2026届河北省枣强县枣强中学高一下数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届河北省枣强县枣强中学高一下数学期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,若,则()A. B. C. D.2.若,,,则的最小值为()A. B. C. D.3.若某市所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是()A.91 B.91.5C.92 D.92.54.设,则()A. B. C. D.5.数列中,若,则下列命题中真命题个数是()(1)若数列为常数数列,则;(2)若,数列都是单调递增数列;(3)若,任取中的项构成数列的子数(),则都是单调数列.A.个 B.个 C.个 D.个6.若等差数列的前5项之和,且,则()A.12 B.13 C.14 D.157.已知函数f(x)=2x+log2x,且实数a>b>c>0,满足A.x0<a B.x0>a8.已知双曲线的焦点与椭圆的焦点相同,则双曲线的离心率为()A. B. C. D.29.设集合,则()A. B. C. D.10.在中,角所对的边分别为,若的面积,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为钝角,且,则__________.12.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.13.等差数列中,,则其前12项之和的值为______14.为了研究问题方便,有时将余弦定理写成:,利用这个结构解决如下问题:若三个正实数,满足,,,则_______.15.设O点在内部,且有,则的面积与的面积的比为.16.已知数列的通项公式为,则该数列的前1025项的和___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为等差数列,且,.求的通项公式;若等比数列满足,,求的前n项和公式.18.的内角的对边分别为,已知.(1)求;(2)若,求边上的高的长.19.已知,,函数.(1)求的最小正周期;(2)求的单调增区间.20.我市某商场销售小饰品,已知小饰品的进价是每件3元,且日均销售量件与销售单价元可以用这一函数模型近似刻画.当销售单价为4元时,日均销售量为400件,当销售单价为8元时,日均销售量为240件.试求出该小饰品的日均销售利润的最大值及此时的销售单价.21.如图是函数的部分图象.(1)求函数的表达式;(2)若函数满足方程,求在内的所有实数根之和;(3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

∵,∴.∴,即,∴,,故选B.【考点定位】向量的坐标运算2、B【解析】

根据题意,得出,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则当且仅当且即时取得最小值.故选B.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理化简,熟练应用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.3、B【解析】试题分析:中位数为中间的一个数或两个数的平均数,所以中位数为考点:茎叶图4、C【解析】

首先化简,可得到大小关系,再根据,即可得到的大小关系.【详解】,,.所以.故选:C【点睛】本题主要考查指数,对数的比较大小,熟练掌握指数和对数函数的性质为解题的关键,属于简单题.5、C【解析】

对(1),由数列为常数数列,则,解方程可得的值;对(2),由函数,,求得导数和极值,可判断单调性;对(3),由,判断奇偶性和单调性,结合正弦函数的单调性,即可得到结论.【详解】数列中,若,,,(1)若数列为常数数列,则,解得或,故(1)不正确;(2)若,,,由函数,,,由,可得极值点唯一且为,极值为,由,可得,则,即有.由于,,由正弦函数的单调性,可得,则数列都是单调递增数列,故(2)正确;(3)若,任取中的9项,,,,,构成数列的子数列,,2,,9,是单调递增数列;由,可得,为奇函数;当时,,时,;当时,;时,,运用正弦函数的单调性可得或时,数列单调递增;或时,数列单调递减.所以数列都是单调数列,故(3)正确;故选:C.【点睛】本题考查数列的单调性的判断和运用,考查正弦函数的单调性,以及分类讨论思想方法,属于难题.6、B【解析】试题分析:由题意得,,又,则,又,所以等差数列的公差为,所以.考点:等差数列的通项公式.7、D【解析】

由函数的单调性可得:当x0<c时,函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)【详解】因为函数f(x)=2则函数y=f(x)在(0,+∞)为增函数,又实数a>b>c>0,满足f(a)f(b)f(c)<0,则f(a),f(b),f(c)为负数的个数为奇数,对于选项A,B,C选项可能成立,对于选项D,当x0函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)<0,故选项D不可能成立,故选:D.【点睛】本题考查了函数的单调性,属于中档题.8、B【解析】根据椭圆可以知焦点为,离心率,故选B.9、B【解析】

补集:【详解】因为,所以,选B.【点睛】本题主要考查了集合的运算,需要掌握交集、并集、补集的运算。属于基础题。10、B【解析】

利用面积公式及可求,再利用同角的三角函数的基本关系式可求,最后利用余弦定理可求的值.【详解】因为,故,所以,因为,故,又,由余弦定理可得,故.故选B.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

利用同角三角函数的基本关系即可求解.【详解】由为钝角,且,所以,所以.故答案为:【点睛】本题考查了同角三角函数的基本关系,同时考查了象限角的三角函数的符号,属于基础题.12、【解析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=13、【解析】

利用等差数列的通项公式、前n项和公式直接求解.【详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【点睛】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.14、【解析】

设的角、、的对边分别为、、,在内取点,使得,设,,,利用余弦定理得出的三边长,由此计算出的面积,再利用可得出的值.【详解】设的角、、的对边分别为、、,在内取点,使得,设,,,由余弦定理得,,同理可得,,,则,的面积为,另一方面,解得,故答案为.【点睛】本题考查余弦定理的应用,问题的关键在于将题中的等式转化为余弦定理,并转化为三角形的面积来进行计算,考查化归与转化思想以及数形结合思想,属于中等题.15、3【解析】

分别取AC、BC的中点D、E,

,

,即,

是DE的一个三等分点,

,

故答案为:3.16、2039【解析】

根据所给分段函数,依次列举出当时的值,即可求得的值.【详解】当时,,当时,,,共1个2.当时,,,共3个2.当时,,,共7个2.当时,,,共15个2.当时,,,共31个2.当时,,,共63个2.当时,,,共127个2.当时,,,共255个2.当时,,,共511个2.当时,,,共1个2.所以由以上可知故答案为:2039【点睛】本题考查了分段函数的应用,由所给式子列举出各个项,即可求和,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

设等差数列的公差为d,由已知列关于首项与公差的方程组,求得首项与公差,则的通项公式可求;求出,进一步得到公比,再由等比数列的前n项和公式求解.【详解】为等差数列,设公差为d,由已知可得,解得,.;由,,等比数列的公比,的前n项和公式.【点睛】本题考查等差数列的通项公式,考查等比数列的前n项和,是中档题.18、(1)(2)【解析】

(1)首先由正弦定理,我们可以将条件化成角度问题,再通过两角和差的正弦公式,即可以得出的正切值,又因为在三角形中,从而求出的值.(2)由第一问得出,我们能求出,而,从而求出.【详解】(1)根据题意因为,所以得,即所以,又因为所以.(2)因为所以又的面积为:可得:【点睛】解三角形题中,我们常根据边的齐次,会利用正弦定理进行边化角,然后通过恒等变形,变成角相关等量关系,作为面积问题,我们初中更多是用底与高的处理,高中能用正弦形式表示,两者统一一起,又能得出相应的等量关系.19、(1)(2)【解析】

(1)直接利用向量的数量积的应用和三角函数关系式的恒等变变换,求出三角函数的关系式,进一步求出函数的最小正周期,即可求得答案.(2)利用(1)的函数关系式和整体思想求出函数的单调区间,即可求得答案.【详解】(1),,函数.(2)由(1)得:令:解得:函数的单调递增区间为:【点睛】本题考查了向量数量积和三角函数求周期,及其求正弦函数单调区间,解题关键是掌握正弦函数周期求法和整体法求正弦函数单调区间的求法,考查了分析能力和计算能力,属于中档题.20、当该小饰品销售单价定位8.5元时,日均销售利润的最大,为1210元.【解析】

根据已知条件,求出,利润,转化为求二次函数的最大值,即可求解.【详解】解:由题意,得解得所以日均销售量件与销售单价元的函数关系为.日均销售利润.当,即时,.所以当该小饰品销售单价定位8.5元时,日均销售利润的最大,为1210元.【点睛】本题考查函数实际应用问题,确定函数解析式是关键,考查二次函数的最值,属于基础题21、(1)(2)答案不唯一,具体见解析(3)【解析】

(1)根据图像先确定A,再确定,代入一个特殊点再确定.(2)根据(1)的结果结合图像即可解决.(3)根据(1)的结果以及三角函数的变换求出即可解决.【详解】解:(Ⅰ)由图可知:,即,又由图可知:是五点作图法中的第三点,,即.(Ⅱ)因为的周期为,在内恰

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论