版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁市马山县高中联合体2026届数学高一下期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“是第二象限角”是“是钝角”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要2.右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:).记甲组数据的众数与中位数分别为,乙组数据的众数与中位数分别为,则()A. B.C. D.3.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.04.若两个球的半径之比为,则这两球的体积之比为()A. B. C. D.5.若关于x的方程sinx+cosx-2A.(2,94] B.[2,56.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或7.在中,设角,,的对边分别是,,,若,,,则其面积等于()A. B. C. D.8.在ΔABC中,角A,B,C的对边分别为a,b,c,若sinA4a=A.-45 B.35 C.9.已知圆,由直线上一点向圆引切线,则切线长的最小值为()A.1 B.2 C. D.10.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.12.关于的不等式,对于恒成立,则实数的取值范围为_______.13.在正方体的体对角线与棱所在直线的位置关系是______.14.已知无穷等比数列满足:对任意的,,则数列公比的取值集合为__________.15.已知数列中,且当时,则数列的前项和=__________.16.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l过点(1,3),且在y轴上的截距为1.
(1)求直线l的方程;
(2)若直线l与圆C:(x-a)2+(y+a)2=5相切,求实数a的值.18.已知数列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求数列{an}的通项公式:(2)若对任意的n∈N*,不等式1≤man≤5恒成立,求实数m的取值范围.19.某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:组号分组频数频率第1组[50,60)50.05第2组[60,70)0.35第3组[70,80)30第4组[80,90)200.20第5组[90,100]100.10合计1001.00(Ⅰ)求的值;(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.20.向量函数.(1)求的最小正周期及单调增区间;(2)求在区间上的最大值和最小值及取最值时的值.21.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由α是钝角可得α是第二象限角,反之不成立,则答案可求.【详解】若α是钝角,则α是第二象限角;反之,若α是第二象限角,α不一定是钝角,如α=﹣210°.∴“α是第二象限角”是“α是钝角”的必要非充分条件.故选B.【点睛】本题考查钝角、象限角的概念,考查了充分必要条件的判断方法,是基础题.2、D【解析】甲组数据的众数为x1=64,乙组数据的众数为x2=66,则x1<x2;甲组数据的中位数为y1==65,乙组数据的中位数为y2==66.5,则y1<y2.3、D【解析】
从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.4、C【解析】
根据球的体积公式可知两球体积比为,进而得到结果.【详解】由球的体积公式知:两球的体积之比故选:【点睛】本题考查球的体积公式的应用,属于基础题.5、D【解析】
换元设t=sinx+cos【详解】sinx+cosx-2sint=sinx+cosa=t-如图:数a的取值范围为[2,故答案选D【点睛】本题考查了换元法,参数分离,函数图像,参数分离和换元法可以简化运算,是解题的关键.6、D【解析】
利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【点睛】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.7、C【解析】
直接利用三角形的面积的公式求出结果.【详解】解:中,角,,的对边边长分别为,,,若,,,则,故选:.【点睛】本题考查的知识要点:三角形面积公式的应用及相关的运算问题,属于基础题.8、B【解析】
由正弦定理可得3sinBsinA=4sin【详解】∵sinA4a∵sinA>0,∴tanB=4故选:B.【点睛】本题考查了正弦定理和同角三角函数的基本关系,属于基础题.9、A【解析】
将圆的方程化为标准方程,找出圆心坐标与半径,求出圆心到直线的距离,利用切线的性质及勾股定理求处切线长的最小值,即可得到答案.【详解】将圆化为标准方程,得,所以圆心坐标为,半径为,则圆心到直线的距离为,所以切线长的最小值为,故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的标准方程,点到直线的距离公式,以及数形结合思想的应用,属于基础题.10、B【解析】
根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【点睛】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由三角形的面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为.【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.12、或【解析】
利用换元法令,则对任意的恒成立,再对分两种情况讨论,令求出函数的最小值,即可得答案.【详解】令,则对任意的恒成立,(1)当,即时,上式显然成立;(2)当,即时,令①当时,,显然不成立,故不成立;②当时,,∴解得:综上所述:或.故答案为:或.【点睛】本题考查含绝对值函数的最值问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意分段函数的最值求解.13、异面直线【解析】
根据异面直线的定义,作出图形,即可求解,得到答案.【详解】如图所示,与不在同一平面内,也不相交,所以体对角线与棱是异面直线.【点睛】本题主要考查了异面直线的概念及其判定,其中熟记异面直线的定义是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.14、【解析】
根据条件先得到:的表示,然后再根据是等比数列讨论公比的情况.【详解】因为,所以,即;取连续的有限项构成数列,不妨令,则,且,则此时必为整数;当时,,不符合;当时,,符合,此时公比;当时,,不符合;当时,,不符合;故:公比.【点睛】本题考查无穷等比数列的公比,难度较难,分析这种抽象类型的数列问题时,经常需要进行分类,可先通过列举的方式找到思路,然后再准确分析.15、【解析】
先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.16、【解析】
根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)y=2x+1;(2)a=-2或【解析】
(1)求得直线的斜率,再由点斜式方程可得所求直线方程;(2)运用直线和圆相切的条件,即圆心到直线的距离等于半径,解方程可得所求值.【详解】(1)直线l过点(1,3),且在y轴上的截距为1,可得直线l的斜率为=2,则直线l的方程为y3=2(x1),即y=2x+1;
(2)若直线l与圆C:(xa)2+(y+a)2=5相切,
可得圆心(a,a)到直线l的距离为,即有
=,解得a=2或.【点睛】本题考查直线方程和圆方程的运用,考查直线和圆相切的条件,考查方程思想和运算能力,属于基础题.18、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】
(1)由已知,根据递推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基础之上解不等式可得实数的取值范围.【详解】(1)由已知,根据递推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,当n≥2时,an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2时,an=11+2×(1﹣()n﹣1),又a1=1也满足上式,故an=3﹣2×()n﹣1.(2)由1≤man≤5,得1≤man=m(3﹣2()n﹣1)≤5.因为3﹣2()n﹣1>0,所以,当n为奇数时,3﹣2()n﹣1∈[1,3);当n为偶数时,3﹣2()n﹣1∈(3,4],所以3﹣2()n﹣1最大值为4,最小值为1.对于任意的正整数n都有成立,所以1≤m.即所求实数m的取值范围是{m|1≤m}.【点睛】本题主要考查数列的递推公式知识和不等式的相关知识,式子繁琐,易错,属于中档题.19、(1)35,0.30;(2).【解析】试题分析:(Ⅰ)直接利用频率和等于1求出b,用样本容量乘以频率求a的值;(Ⅱ)由分层抽样方法求出所抽取的6人中第三、第四、第五组的学生数,利用列举法写出从中任意抽取2人的所有方法种数,查出2人至少1人来自第四组的事件个数,然后利用古典概型的概率计算公式求解.试题解析:(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30(Ⅱ)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为,第3组:×30=3人,第4组:×20=2人,第5组:×10=1人,所以第3、4、5组应分别抽取3人、2人、1人设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从6位同学中抽2位同学有15种可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4组被入选的有9种,所以其中第4组的2位同学至少有1位同学入选的概率为=点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.20、(1),(2),最大值为;,最小值为0【解析】
(1)用已知的向量表示出,再进行化简整理,可得;(2)由正弦函数的值域可得。【详解】(1)由题得,,化简整理得,因此的最小正周期为,由得,则单调增区间为.(2)若,则,当,即时,取最大值,当,即时,取最小值0.综上,当时,取最大值,当时,取最小值0.【点睛】本题考查向量的运算和函数的周期,单调区间以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北随州市部分高中2025-2026学年高二上学期期末联考英语试题含解析
- 2026年医学研究生入学考试临床医学知识要点题库
- 2026年电商运营策略及销售业绩分析题库
- 2026年农业科技发展与农村产业结构调整考试题目
- 2026年城市规划数据解析师等级考试题
- 2026年教育法律法规及教师职业道德测试题
- 河南省信阳市息县息县一中2026届高一下数学期末学业质量监测模拟试题含解析
- 2026年金融分析师投资策略与风险管理模拟题附标准答案
- 2026年工业机器人操作维护题库
- 2026年企业领导者财务管理及资本运作技能考核题
- 急救培训自查、整改与提升措施
- 免还款协议5篇
- 2024年江苏省无锡市中考数学试卷(副卷)
- 新版GCP培训课件
- 单凤儒《管理学基础》教案
- 客户开发流程图
- 畜牧学概论完整
- DL∕T 516-2017 电力调度自动化运行管理规程
- 钢琴乐理知识考试题库200题(含答案)
- 高一年级英语上册阅读理解专项训练附答案
- 教师的“四大能力”能力结构、评价标准和评价方案
评论
0/150
提交评论