2026届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第1页
2026届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第2页
2026届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第3页
2026届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第4页
2026届广东省揭阳市重点名校高一下数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省揭阳市重点名校高一下数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了了解所加工的一批零件的长度,抽测了其中个零件的长度,在这个工作中,个零件的长度是()A.总体 B.个体 C.样本容量 D.总体的一个样本2.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为()A. B. C. D.3.向量,则()A. B.C.与的夹角为60° D.与的夹角为30°4.数列只有5项,分别是3,5,7,9,11,的一个通项公式为()A. B. C. D.5.在中,是上一点,且,则()A. B.C. D.6.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或7.下列极限为1的是()A.(个9) B.C. D.8.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.9.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用,表示,方差分别用,表示,则()A., B.,C., D.,10.若向量,且,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设()则数列的各项和为________12.已知角的终边经过点,则______.13.当时,的最大值为__________.14.已知平面向量,若,则________15.设y=f(x)是定义域为R的偶函数,且它的图象关于点(2,0)对称,若当x∈(0,2)时,f(x)=x2,则f(19)=_____16.已知向量,,若,则实数___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,是边长为的正三角形,点四等分线段.(Ⅰ)求的值;(Ⅱ)若点是线段上一点,且,求实数的值.18.已知数列的前项和为(1)证明:数列是等差数列;(2)设,求数列的前2020项和.19.已知不等式ax2-3x+6>4的解集为{x|x<1(1)求a,b;(2)解关于x的不等式a20.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.21.已知曲线C:x2+y2+2x+4y+m=1.(1)当m为何值时,曲线C表示圆?(2)若直线l:y=x﹣m与圆C相切,求m的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据总体与样本中的相关概念进行判断.【详解】由题意可知,在这个工作中,个零件的长度是总体的一个样本,故选D.【点睛】本题考查总体与样本中相关概念的理解,属于基础题.2、B【解析】

依题意得,豆子落在阴影区域内的概率等于阴影部分面积与正方形面积之比,即可求出结果.【详解】设阴影区域的面积为,由题意可得,则.故选:B.【点睛】本题考查随机模拟实验,根据几何概型的意义进行模拟实验计算阴影部分面积,关键在于掌握几何概型的计算公式.3、B【解析】试题分析:由,可得,所以,故选B.考点:向量的运算.4、B【解析】

根据题意,得到数列为等差数列,通过首项和公差,得到通项.【详解】因为数列只有5项,分别是3,5,7,9,11,所以是以为首项,为公差的等差数列,.故选:B.【点睛】本题考查求等差数列的通项,属于简单题.5、C【解析】

利用平面向量的三角形法则和共线定理,即可得到结果.【详解】因为是上一点,且,则.故选:C.【点睛】本题考查了平面向量的线性运算和共线定理的应用,属于基础题.6、D【解析】

利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【点睛】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.7、A【解析】

利用极限的运算逐项求解判断即可【详解】对于A项,极限为1,对于B项,极限不存在,对于C项,极限为1.对于D项,,故选:A.【点睛】本题考查的极限的运算及性质,准确计算是关键,是基础题8、D【解析】

A、B={x|x>2或x<-2},

∵集合A={x|x>-2},

∴A∪B={x|x≠-2}≠A,不合题意;

B、B={x|x≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合题意;

C、B={y|y≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合题意;

D、若B={-1,0,1,2,3},

∵集合A={x|x>-2},

∴A∪B={x|x>-2}=A,与题意相符,

故选D.9、D【解析】

分别计算出他们的平均数和方差,比较即得解.【详解】由题意可得,,,.故,.故选D【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.10、B【解析】

根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【详解】因为且,所以,所以,所以.故选:B.【点睛】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据无穷等比数列的各项和的计算方法,即可求解,得到答案.【详解】由题意,数列的通项公式为,且,所以数列的各项和为.故答案为:.【点睛】本题主要考查了无穷等比数列的各项和的求解,其中解答中熟记无穷等比数列的各项和的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】由题意,则.13、-3.【解析】

将函数的表达式改写为:利用均值不等式得到答案.【详解】当时,故答案为-3【点睛】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.14、1【解析】

根据即可得出,解出即可.【详解】∵;∴;解得,故答案为1.【点睛】本题主要考查向量坐标的概念,以及平行向量的坐标关系,属于基础题.15、﹣1.【解析】

根据题意,由函数的奇偶性与对称性分析可得,即函数是周期为的周期函数,据此可得,再由函数的解析式计算即可.【详解】根据题意,是定义域为的偶函数,则,又由得图象关于点对称,则,所以,即函数是周期为的周期函数,所以,又当时,,则,所以.故答案为:.【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.16、【解析】

由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【详解】,解得:故答案为:【点睛】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)以作为基底,表示出,然后利用数量积的运算法则计算即可求出;(Ⅱ)由平面向量数量积的运算及其运算可得:设,又,所以,解得,得解.【详解】(Ⅰ)由题意得,则(Ⅱ)因为点Q是线段上一点,所以设,又,所以,故,解得,因此所求实数m的值为.【点睛】本题主要考查了平面向量的线性运算以及数量积的运算以及平面向量基本定理的应用,属于中档题.18、(1)见解析;(2)3030【解析】

(1)当时,可求出首项,当时,利用即可求出通项公式,进而证明是等差数列;(2)可将奇数项和偶数项合并求和即可得到答案.【详解】(1)当时,当时,综上,.因为,所以是等差数列.(2)法一:,的前2020项和为:法二:,的前2020项和为:.【点睛】本题主要考查等差数列的证明,分组求和的相关计算,意在考查学生的分析能力和计算能力,难度中等.19、(1)a=1,b=2;(2)①当c>2时,解集为{x|2<x<c};②当c<2时,解集为{x|c<x<2};③当c=2时,解集为∅.【解析】

(1)根据不等式ax2﹣3x+6>4的解集,利用根与系数的关系,求得a、b的值;(2)把不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,讨论c的取值,求出对应不等式的解集.【详解】(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1,或x>b},所以1和b是方程ax2﹣3x+2=0的两个实数根,且b>1;由根与系数的关系,得1+b=3解得a=1,b=2;(2)所求不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0;①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.【点睛】本题考查了不等式的解法与应用问题,也考查了不等式与方程的关系,考查了分类讨论思想,是中档题.20、(1)见解析;(2)0.【解析】

(1)药物在白鼠血液内的浓度y与时间t的关系为:当a=1时,y=y1+y2;①当0<t<1时,y=﹣t4=﹣()2,所以ymax=f();②当1≤t≤3时,∵,所以ymax=7﹣2(当t时取到),因为,故ymax=f().(2)由题意y①⇒⇒,又0<t<1,得出a≤1;②⇒⇒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论