天津市静海区独流中学等四校2026届高一下数学期末综合测试模拟试题含解析_第1页
天津市静海区独流中学等四校2026届高一下数学期末综合测试模拟试题含解析_第2页
天津市静海区独流中学等四校2026届高一下数学期末综合测试模拟试题含解析_第3页
天津市静海区独流中学等四校2026届高一下数学期末综合测试模拟试题含解析_第4页
天津市静海区独流中学等四校2026届高一下数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市静海区独流中学等四校2026届高一下数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知满足条件,则目标函数的最小值为A.0 B.1 C. D.2.已知a,b为非零实数,且,则下列不等式一定成立的是()A. B. C. D.3.化简的结果是()A. B.C. D.4.点是空间直角坐标系中的一点,过点作平面的垂线,垂足为,则点的坐标为()A.(1,0,0) B. C. D.5.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg6.在△ABC中,sinA:sinB:sinC=4:3:2,则cosA的值是()A. B. C. D.7.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.88.设m,n是两条不同的直线,α A.若m⊥β,n⊥β , n⊥α,则m⊥αC.若m⊥n, n∥α,则m⊥α D.若m⊥n9.若向量=,||=2,若·(-)=2,则向量与的夹角()A. B. C. D.10.若数列{an}是等比数列,且an>0,则数列也是等比数列.若数列是等差数列,可类比得到关于等差数列的一个性质为().A.是等差数列B.是等差数列C.是等差数列D.是等差数列二、填空题:本大题共6小题,每小题5分,共30分。11.过P(1,2)的直线把圆分成两个弓形,当其中劣孤最短时直线的方程为_________.12.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………13.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.14.函数的值域为_____________.15.已知一组数据、、、、、,那么这组数据的平均数为__________.16.已知实数满足,则的最大值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,分别是内角所对的边,已知.(1)求角;(2)若,求的周长.18.已知锐角三个内角、、的对边分别是,且.(1)求A的大小;(2)若,求的面积.19.设函数和都是定义在集合上的函数,对于任意的,都有成立,称函数与在上互为“互换函数”.(1)函数与在上互为“互换函数”,求集合;(2)若函数(且)与在集合上互为“互换函数”,求证:;(3)函数与在集合且上互为“互换函数”,当时,,且在上是偶函数,求函数在集合上的解析式.20.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.21.如图,在中,,四边形是边长为的正方形,平面平面,若,分别是的中点.(1)求证:平面;(2)求证:平面平面;(3)求几何体的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】作出不等式区域如图所示:求目标函数的最小值等价于求直线的最小纵截距.平移直线经过点A(-2,0)时最小为-2.故选C.2、C【解析】

,时,、、不成立;利用作差比较,即可求出.【详解】解:,时,,,故、、不成立;,,.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.3、D【解析】

确定角的象限,结合三角恒等式,然后确定的符号,即可得到正确选项.【详解】因为为第二象限角,所以,故选D.【点睛】本题是基础题,考查同角三角函数的基本关系式,象限三角函数的符号,考查计算能力,常考题型.4、B【解析】

根据空间直角坐标系的坐标关系,即可求得点的坐标.【详解】空间直角坐标系中点过点作平面的垂线,垂足为,可知故选:B【点睛】本题考查了空间直角坐标系及坐标关系,属于基础题.5、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.6、A【解析】

由正弦定理可得,再结合余弦定理求解即可.【详解】解:因为在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故选:A.【点睛】本题考查了正弦定理及余弦定理,重点考查了运算能力,属基础题.7、B【解析】

如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【点睛】8、A【解析】

依据立体几何有关定理及结论,逐个判断即可。【详解】A正确:利用“垂直于同一个平面的两条直线平行”及“两条直线有一条垂直于一个平面,则另一条也垂直于该平面”,若m⊥β且n⊥β ,则m//n,又n⊥α,所以m⊥αB错误:若m∥β, , β⊥α,则C错误:若m⊥n, n∥α,则m可能垂直于平面α,也可能平行于平面α,还可能在平面D错误:若m⊥n , n⊥β , β⊥α,则【点睛】本题主要考查立体几何中的定理和结论,意在考查学生几何定理掌握熟练程度。9、A【解析】

根据向量的数量积运算,向量的夹角公式可以求得.【详解】由已知可得:,得,设向量与的夹角为,则所以向量与的夹角为故选A.【点睛】本题考查向量的数量积运算和夹角公式,属于基础题.10、B【解析】试题分析:本题是由等比数列与等差数列的相似性质,推出有关结论:由“等比”类比到“等差”,由“几何平均数”类比到“算数平均数”;所以,所得结论为是等差数列.考点:类比推理.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先根据圆的几何性质,可分析出当点是弦的中点时,劣弧最短,利用圆心和弦的中点连线与直线垂直,可求得直线方程.【详解】当劣弧最短时,即劣弧所对的弦最短,当点是弦的中点时,此时弦最短,也即劣弧最短,圆:,圆心,,,直线方程是,即,故填:.【点睛】本题考查了直线与圆的位置关系,以及圆的几何性质,属于基础题型.12、128【解析】

观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【点睛】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.13、【解析】

如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以,,,设异面直线的夹角为,所以.14、【解析】

分析函数在区间上的单调性,由此可求出该函数在区间上的值域.【详解】由于函数和函数在区间上均为增函数,所以,函数在区间上也为增函数,且,,当时,,因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,解题的关键就是判断出函数的单调性,考查分析问题和解决问题的能力,属于中等题.15、【解析】

利用平均数公式可求得结果.【详解】由题意可知,数据、、、、、的平均数为.故答案为:.【点睛】本题考查平均数的计算,考查平均数公式的应用,考查计算能力,属于基础题.16、【解析】

根据约束条件,画出可行域,目标函数可以看成是可行域内的点和的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件可以画出可行域,如下图阴影部分所示,目标函数可以看成是可行域内的点和的连线的斜率,因此可得,当在点时,斜率最大联立,得即所以此时斜率为,故答案为.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)6【解析】

(1)由条件利用正弦定理求B的某个函数值,结合B的范围确定B的大小.(2)由(1)及求得ac,再利用余弦定理可得.【详解】解:(1)因为,由正弦定理可得,又,所以,则,因为,所以;(2)由已知,所以,由余弦定理得,所以,则,因此的周长为6.【点睛】本题考查正弦定理、余弦定理及三角形面积计算,有时利用整体运算可以起到事半功倍的作用,考查计算能力,属于中档题.18、(1)(2)【解析】

(1)根据正弦定理把边化为对角的正弦求解;(2)根据余弦定理和已知求出,再根据面积公式求解.【详解】解:(1)由正弦定理得∵,∴,又∵∴(2)由余弦定理得所以即∴∴的面积为【点睛】本题考查解三角形.常用方法有正弦定理,余弦定理,三角形面积公式;注意增根的排除.19、(1)(2)见解析(3),【解析】

(1)利用列方程,并用二倍角公式进行化简,求得或,进而求得集合.(2)由,得(且),化简后根据的取值范围,求得的取值范围.(3)首先根据为偶函数,求得当时,的解析式,从而求得当时,的解析式.依题意“当,恒成立”,化简得到,根据函数解析式的求法,求得时,以及,进而求得函数在集合上的解析式.【详解】(1)由得化简得,,所以或.由解得或,,即或,.又由解得,.所以集合,或,即集合.(2)证明:由,得(且).变形得,所以.因为,则,所以.(3)因为函数在上是偶函数,则.当,则,所以.所以,因此当时,.由于与函数在集合上“互换函数”,所以当,恒成立.即对于任意的恒成立.即.于是有,,.上述等式相加得,即.当()时,,所以.而,,所以当时,,【点睛】本小题主要考查新定义函数的理解和运用,考查二倍角公式和特殊角的三角函数值,考查指数运算和指数函数的值域,考查根据函数的奇偶性求函数的解析式,考查化归与转化的数学思想方法,考查分析、思考与解决问题的能力,属于难题.20、(1)见解析(2)【解析】

(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于是有,这样就证得线面平行;(2)由等体积法变换后可计算.【详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【点睛】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.21、(1)详见解析(2)详见解析(2)【解析】

试题分析:(1)如图,连接EA交BD于F,利用正方形的性质、三角形的中位线定理、线面平行的判定定理即可证明.(2)利用已知可得:FG⊥平面EBC,可得∠FBG就

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论