版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一次函数压轴题之矩形1.如图,在平面真角坐标系中,点A的坐标是(﹣,0),点B的坐标是(0,1).点B和点C关于原点对称.点P是直线AB位于y轴右侧部分图象上一点,连接CP,已知S△BPC=S△ABC,(1)求直线AC的解析式;(2)如图2,△AOC沿着直线AC平移得△A′O′C′,平移后的点A′与点C重合点F为直线AC上的一动点,当PF+FC′的值最小时,请求出PF+FC′的最小值及此时点F的坐标;(3)如图3,将△PBC沿直线PA翻折得△PBG,点N为平面内任意一动点,在直线PA上是否存在点M,使得以点M、N、P、G为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.2.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.3.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.
1.【解答】解:(1)点B和点C关于原点对称,则点C(0,﹣1),将点A、C的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AC的表达式为:y=﹣x﹣1;(2)过点C′作直线l∥x轴,过点P作PF′⊥l,垂足为点F′,交AC于点F,tan∠ABO==,故∠ABO=60°,∠BAO=30°,∵∠OAB=30°=∠FC′F′,∴FFFC′,则PF+FC′=PF+FF′=PF′,即此时,PF+FC′最小,最小值为PF′,S△BPC=S△ABC,则|xP|=|xA|,故点P(,),AC=CC′=2,则点C′(,﹣2),则点F′(,﹣2),点F(,﹣),PF+FC′最小值PF′=;(3)存在,理由:①当GM⊥PM时,如图∠ABC=60°=∠ABG,∴∠GBH=60°,GB=BC=2,则GH=GBsin∠GBH=2×sin60,故点G(﹣,2);M、N、P、G为顶点的四边形是矩形,点M位置如下图所示,设点M(m,m+1),将点A、B的坐标代入一次函数:y=sx+t得:,解得:,故直线AB的表达式为:y=x+1…①,∵GM⊥AB,则设直线GM的表达式为:y=﹣x+b,将点G的坐标代入上式得:2=﹣(﹣)+b,解得:b=﹣1,故:直线GM的表达式为:y=﹣x﹣1…②,联立①②并解得:x=﹣,故点M(﹣,);②当GM⊥GP时,同理可得:点M(﹣,﹣);综上,点M(﹣,)或(﹣,﹣).2.【解答】解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,在直角△AOB中,AB===10;(2)∵BC平分∠ABO,CD⊥AB,AO⊥BO,∴OC=CD,设OC=x,则AC=8﹣x,CD=x.∵△ACD和△ABO中,∠CAD=∠BAO,∠ADC=∠AOB=90°,∴△ACD相似于△ABO,∴,即,解得:x=3.即OC=3,则C的坐标是(﹣3,0).设AB的解析式是y=kx+b,根据题意得解得:则直线AB的解析式是y=x+6,设CD的解析式是y=﹣x+m,则4+m=0,则m=﹣4.则直线CE的解析式是y=﹣x﹣4;(3)①当AB为矩形的边时,如图所示矩形AM1P1B,易知BC的直线方程为y=2x+6,设M1(m,2m+6),P1(x,y),因为A(﹣8,0),B(0,6),则AM12=(m+8)2+(2m+6)2,=5m2+40m+100,BM12=m2+(2m+6﹣6)2=5m2,AB=10,根据AB2+AM12=BM12得100+5m2+40m+100=5m2,m=﹣5,∴M1(﹣5,﹣4),根据平移规律可以解得P1(3,2)②当AB为矩形的对角线时,此时有AB2=AM22+BM22,即100=5m2+40m+100+5m2,m=﹣4或m=0(舍去),∴M2(﹣4,﹣2),根据平移规律可以解得P2(﹣4,8)综上可得,满足条件的P点的坐标为P1(3,2)或P2(﹣4,8).3.【解答】解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).4.【解答】解:(1)∵x2﹣18x+72=0∴x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∴=,∴,∴OB=16.在Rt△AOB中,由勾股定理,得AB==20.∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,∴,∴EM=12,AM=9,∴OM=12﹣9=3,∴E(3,12),∴12=,∴k=36;(3)满足条件的点Q的个数是6,如图2所示,x轴的下方的Q4(10,﹣12),Q6(﹣3,6﹣3);如图①,∵E(3,12),C(﹣6,0),∴CG=9,EG=12,∴EG2=CG
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论