版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届辽宁省北镇市中学数学高一下期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方形的边长为a,以A,C为圆心,正方形边长为半径分别作圆,在正方形内随机取一点,则此点取自阴影部分的概率是()A.2-π2 B.2-π32.有穷数列中的每一项都是-1,0,1这三个数中的某一个数,,且,则有穷数列中值为0的项数是()A.1000 B.1010 C.1015 D.10303.有一个内角为120°的三角形的三边长分别是m,m+1,m+2,则实数m的值为()A.1 B. C.2 D.4.已知向量满足:,,,则()A. B. C. D.5.若变量满足约束条件则的最大值为()A.4 B.3 C.2 D.16.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则()A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线7.若向量,,且,则=()A. B.- C. D.-8.两圆和的位置关系是()A.相离 B.相交 C.内切 D.外切9.若偶函数在上是增函数,则()A. B.C. D.不能确定10.已知向量,且为正实数,若满足,则的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.12.如图,在中,已知点在边上,,,则的长为____________.13.在中,角、、所对的边为、、,若,,,则角________.14.假设我国国民生产总值经过10年增长了1倍,且在这10年期间我国国民生产总值每年的年增长率均为常数,则______.(精确到)(参考数据)15.已知正实数a,b满足2a+b=1,则1a16.设,用,表示所有形如的正整数集合,其中且,为集合中的所有元素之和,则的通项公式为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,为两非零有理数列(即对任意的,,均为有理数),为一个无理数列(即对任意的,为无理数).(1)已知,并且对任意的恒成立,试求的通项公式;(2)若为有理数列,试证明:对任意的,恒成立的充要条件为;(3)已知,,试计算.18.如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面平面,点分别是棱上的点,平面平面(Ⅰ)确定点的位置,并说明理由;(Ⅱ)求三棱锥的体积.19.如图,单位圆与轴正半轴相交于点,圆上的动点从点出发沿逆时针旋转一周回到点,设(),的面积为(当三点共线时,),与的函数关系如图所示的程序框图.(1)写出程序框图中①②处的函数关系式;(2)若输出的值为,求点的坐标.20.某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的化学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,,…,后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求出这60名学生中化学成绩低于50分的人数;(2)估计高二年级这次考试化学学科及格率(60分以上为及格);(3)从化学成绩不及格的学生中随机调查1人,求他的成绩低于50分的概率.21.求经过点且分别满足下列条件的直线的一般式方程.(1)倾斜角为45°;(2)在轴上的截距为5;(3)在第二象限与坐标轴围成的三角形面积为4.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
将阴影部分拆分成两个小弓形,从而可求解出阴影部分面积,根据几何概型求得所求概率.【详解】如图所示:阴影部分可拆分为两个小弓形则阴影部分面积:S正方形面积:S=∴所求概率P=本题正确选项:D【点睛】本题考查利用几何概型求解概率问题,属于基础题.2、B【解析】
把(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870展开,将a1+a2+a3+…+a2015=425,代入化简得:=1005,由于数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,即可得出.【详解】(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870,展开可得:+2(a1+a2+…+a2015)+2015=3870,把a1+a2+a3+…+a2015=425,代入化简可得:=1005,∵数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,∴有穷数列a1,a2,a3,…,a2015中值为0的项数等于2015﹣1005=1.故选B.【点睛】本题考查了乘法公式化简求值、数列求和,考查了推理能力与计算能力,属于中档题.3、B【解析】
由已知利用余弦定理可得,解方程可得的值.【详解】在三角形中,由余弦定理得:,化简可得:,解得或(舍).故选:B.【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了方程思想,属于基础题.4、D【解析】
首先根据题中条件求出与的数量积,然后求解即可.【详解】由题有,即,,所以.故选:D.【点睛】本题主要考查了向量的模,属于基础题.5、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】作出约束条件,所对应的可行域(如图阴影部分)变形目标函数可得,平移直线可知,当直线经过点时,直线的截距最小,代值计算可得取最大值故选B.【点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6、B【解析】
利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角性.7、B【解析】
根据向量平行的坐标表示,列出等式,化简即可求出.【详解】因为,所以,即,解得,故选B.【点睛】本题主要考查向量平行的坐标表示以及同角三角函数基本关系的应用.8、B【解析】
由圆的方程可得两圆圆心坐标和半径;根据圆心距和半径之间的关系,即可判断出两圆的位置关系.【详解】由圆的方程可知,两圆圆心分别为:和;半径分别为:,则圆心距:两圆位置关系为:相交本题正确选项:【点睛】本题考查圆与圆位置关系的判定;关键是明确两圆位置关系的判定是根据圆心距与两圆半径之间的长度关系确定.9、B【解析】
根据偶函数性质与幂函数性质可得.【详解】偶函数在上是增函数,则它在上是减函数,所以.故选:B.【点睛】本题考查幂函数的性质,考查偶函数性质,属于基础题.10、A【解析】
根据向量的数量积结合基本不等式即可.【详解】由题意得,因为,为正实数,则当且仅当时取等.所以选择A【点睛】本题主要考查了向量的数量积以及基本不等式,在用基本不等式时要满足一正二定三相等.属于中等题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.12、【解析】
由诱导公式可知,在中用余弦定理可得BD的长。【详解】由题得,,在中,可得,又,代入得,解得.故答案为:【点睛】本题考查余弦定理和诱导公式,是基础题。13、.【解析】
利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.14、【解析】
根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,结合题意可得,解可得的值,即可得答案.【详解】解:根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,则有,即,解可得:,故答案为:.【点睛】本题考查函数的应用,涉及指数、对数的运算,关键是得到关于的方程,属于基础题.15、9【解析】
利用“乘1法”和基本不等式即可得出.【详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【点睛】本题考查了“乘1法”和基本不等式的应用,属于基础题.16、【解析】
把集合中每个数都表示为2的0到的指数幂相加的形式,并确定,,,,每个数都出现次,于是利用等比数列求和公式计算,可求出数列的通项公式.【详解】由题意可知,,,,是0,1,2,,的一个排列,且集合中共有个数,若把集合中每个数表示为的形式,则,,,,每个数都出现次,因此,,故答案为:.【点睛】本题以数列新定义为问题背景,考查等比数列的求和公式,考查学生的理解能力与计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析;(3).【解析】
(1)根据不等式可得,把代入即可解出(2)根据化简,利用为有理数即可解决(3)根据题意可知,本题需分为奇数和偶数时讨论,通过求出.【详解】(1)∵,∴,即,∴,∵,∴,∴.(2)∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,以上每一步可逆.(3),∴.∵,∴,当时,∴当时,∴,∴为有理数列,∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,∴当时,∴当时,∴,∴.【点睛】本题数列的分类问题,数列通项式的求法、有关数列的综合问题等.本题难度、计算量较大,属于难题.18、(Ⅰ)见解析(Ⅱ)【解析】试题分析:(1)根据面面平行的性质得到,,根据平行关系和长度关系得到点是的中点,点是的中点;(2),因为,所以,进而求得体积.详解:(1)因为平面平面,平面平面,平面平面,所以,又因为,所以四边形是平行四边形,所以,即点是的中点.因为平面平面,平面平面,平面平面,所以,又因为点是的中点,所以点是的中点,综上:分别是的中点;(Ⅱ)因为,所以,又因为平面平面,所以平面;又因为,所以.点睛:这个题目考查了面面平行的性质应用,空间几何体的体积的求法,求椎体的体积,一般直接应用公式底乘以高乘以三分之一,会涉及到点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,还可以等体积转化.19、(1)见解析;(2)见解析【解析】
(1)通过实际问题得到与的函数关系为分段函数,从而判断出程序框填的结果.(2)分类讨论时和时两种情形下的点Q坐标,从而得到答案.【详解】(1)当时,,当时,函数的解析式为,故程序框图中①②处的函数关系式分别是,(2)时,令,即,或,点的坐标为或时,令,即,或,点的坐标为或故点的坐标为【点睛】本题主要考查算法框图,三角函数的运用,意在考查学生的数形结合思想,分析实际问题的能力.20、(1)6人;(2)75%;(3).【解析】试题分析:(1)由频率分布直方图可得化学成绩低于50分的频率为0.1,然后可求得人数为人;(2)根据频率分布直方图求分数在第三、四、五、六组的频率之和即可;(3)结合图形可得“成绩低于50分”的人数是6人,成绩在这组的人数是,由古典概型概率公式可得所求概率为。试题解析:(1)因为各组的频率和等于1,由频率分布直方图可得低于50分的频率为:,所以低于分的人数为(人).(2)依题意可得成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),其频率之和为,故抽样学生成绩的及格率是,于是,可以估计这次考试化学学科及格率约为75%.(3)由(1)知,“成绩低于50分”的人数是6人,成绩在这组的人数是(人),所以从成绩不及格的学生中随机调查1人,有15种选法,成绩低于50分有6种选法,故所求概率为.21、(1)(2)(3)【解析】
(1)利用斜率和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 局工作绩效考核制度
- 校外辅导员考核制度
- 统计员业务考核制度
- 中心理论中考核制度
- 煤矿安全科考核制度
- 快餐店员工考核制度
- 检验科轮转考核制度
- 阿里第三套考核制度
- 养老院责任考核制度
- 校级志愿者考核制度
- 花旗-中国经济:AI驱动的新经济中宏观与微观的脱节-The Macro-Micro Disconnect of AI-Driven New Economy-20260203
- 人格特质课件
- 境外产品营销方案(3篇)
- 2025至2030老年手机行业产业运行态势及投资规划深度研究报告
- TCNAS 51-2025成人患者医用粘胶相关性皮肤损伤的预防及护理
- 山东万级洁净室施工方案
- 物业客服对客沟通培训
- 2025年浙江省中考科学试题卷(含答案解析)
- 卡西欧手表5114机芯中文说明书
- 急腹症的超声诊断课件
- T/BIKE 7.2-2020电动自行车锂离子蓄电池换电柜技术要求第2部分:锂离子电池组
评论
0/150
提交评论