山东省滨州行知中学2026届数学高一下期末监测模拟试题含解析_第1页
山东省滨州行知中学2026届数学高一下期末监测模拟试题含解析_第2页
山东省滨州行知中学2026届数学高一下期末监测模拟试题含解析_第3页
山东省滨州行知中学2026届数学高一下期末监测模拟试题含解析_第4页
山东省滨州行知中学2026届数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省滨州行知中学2026届数学高一下期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,且,则等于()A. B. C. D.2.已知实数满足约束条件,则目标函数的最小值为()A. B. C.1 D.53.等比数列中,,,则公比等于()A.2 B.3 C. D.4.若向量,,且,则=()A. B.- C. D.-5.从3位男运动员和4位女运动员中选派3人参加记者招待会,至少有1位男运动员和1位女运动员的选法有()种A. B. C. D.6.把十进制数化为二进制数为A. B.C. D.7.已知向量,且,则的值为()A. B. C. D.8.在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()345.156.1264.04187.51218.01A. B. C. D.9.在中,角,,所对的边分别为,,,若,,,则()A. B. C. D.10.已知函数的图象如图所示,则的解析式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11._____12.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.13.如图,分别沿长方形纸片和正方形纸片的对角线剪开,拼成如图所示的平行四边形,且中间的四边形为正方形.在平行四边形内随机取一点,则此点取自阴影部分的概率是______________14.在中,角所对的边为,若,且的外接圆半径为,则________.15.圆台两底面半径分别为2cm和5cm,母线长为cm,则它的轴截面的面积是________cm2.16.角的终边经过点,则___________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.“精准扶贫”的重要思想最早在2013年11月提出,到湘西考察时首次作出“实事求是,因地制宜,分类指导,精准扶贫”的重要指导。2015年在贵州调研时强调要科学谋划好“十三五”时期精准扶贫开发工作,确保贫困人口到2020年如期脱贫。某农科所实地考察,研究发现某贫困村适合种植A、B两种药材,可以通过种植这两种药材脱贫。通过大量考察研究得到如下统计数据:药材A的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:编号12345年份20152016201720182019单价(元/公斤)1820232529药材B的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:(1)若药材A的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计2020年药材A的单价;(2)用上述频率分布直方图估计药材B的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材A还是药材B?并说明理由.附:,.18.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设年内(本年度为第一年)总投入为万元,旅游业总收入为万元,写出的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?19.若(1)化简;(2)求函数的单调递增区间.20.已知直线的方程为,其中.(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.21.在直角坐标系中,以坐标原点为圆心的圆与直线相切。求圆的方程;若圆上有两点关于直线对称,且,求直线的方程;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

在△ABC中,利用正弦定理与两角和的正弦化简已知可得,sin(A+C)=sinB,结合a>b,即可求得答案.【详解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故选A.【点睛】本题考查两角和与差的正弦函数与正弦定理的应用,考查了大角对大边的性质,属于中档题.2、A【解析】

作出不等式组表示的平面区域,再观察图像即可得解.【详解】解:先作出不等式组表示的平面区域,如图所示,由图可知目标函数所对应的直线过点时目标函数取最小值,则,故选:A.【点睛】本题考查了简单的线性规划问题,重点考查了数形结合的数学思想方法,属基础题.3、A【解析】

由题意利用等比数列的通项公式,求出公比的值.【详解】解:等比数列中,,,,则公比,故选:.【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.4、B【解析】

根据向量平行的坐标表示,列出等式,化简即可求出.【详解】因为,所以,即,解得,故选B.【点睛】本题主要考查向量平行的坐标表示以及同角三角函数基本关系的应用.5、C【解析】

利用分类原理,选出的3人中,有1男2女,有2男1女,两种情况相加得到选法总数.【详解】(1)3人中有1男2女,即;(2)3人中有2男1女,即;所以选法总数为,故选C.【点睛】分类加法原理和分步乘法原理进行计算时,要注意分类的标准,不出现重复或遗漏情况,本题若是按先选1个男的,再选1个女的,最后从剩下的5人中选1人,则会出现重复现象.6、C【解析】选C.7、B【解析】

由向量平行可构造方程求得结果.【详解】,解得:故选:【点睛】本题考查根据向量平行求解参数值的问题,关键是明确两向量平行可得.8、A【解析】

由表中的数据分析得:自变量基本上是等速增加,相应的函数值增加的速度越来越快,结合基本初等函数的单调性,即可得出答案.【详解】对于A:函数在是单调递增,且函数值增加速度越来越快,将自变量代入,相应的函数值,比较接近,符合题意,所以正确;对于B:函数值随着自变量增加是等速的,不合题意;对于C:函数值随着自变量的增加比线性函数还缓慢,不合题意;选项D:函数值随着自变量增加反而减少,不合题意.故选:A.【点睛】本题考查函数模型的选择和应用问题,解题的关键是掌握各种基本初等函数,如一次函数,二次函数,指数函数,对数函数的图像与性质,属于基础题.9、C【解析】

在中,利用正弦定理求出即可.【详解】在中,角,,所对的边分别为,,,已知:,,,利用正弦定理:,解得:.故选C.【点睛】本题考查了正弦定理的应用及相关的运算问题,属于基础题.10、D【解析】

由函数图象求出,由周期求出,由五点发作图求出的值,即可求出函数的解析式.【详解】解:根据函数的图象,可得,,所以.再根据五点法作图可得,所以,故.故选:D.【点睛】本题主要考查由函数的部分图像求解析式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将写成,切化弦后,利用两角和差余弦公式可将原式化为,利用二倍角公式可变为,由可化简求得结果.【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.12、②③④【解析】

首先化简函数解析式,逐一分析选项,得到答案.【详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【点睛】本题考查了三角函数的化简和三角函数的性质,属于中档题型.13、【解析】

设正方形的边长为,正方形的边长为,分别求出阴影部分的面积和平行四边形的面积,最后利用几何概型公式求出概率.【详解】设正方形的边长为,正方形的边长为,在长方形中,,故平行四边形的面积为,阴影部分的面积为,所以在平行四边形KLMN内随机取一点,则此点取自阴影部分的概率是.【点睛】本题考查了几何概型概率的求法,求出平行四边形的面积是解题的关键.14、或.【解析】

利用正弦定理求出的值,结合角的取值范围得出角的值.【详解】由正弦定理可得,所以,,,或,故答案为或.【点睛】本题考查正弦定理的应用,在利用正弦值求角时,除了找出锐角还要注意相应的补角是否满足题意,考查计算能力,属于基础题.15、63【解析】

首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.【详解】画出轴截面,如图,过A作AM⊥BC于M,则BM=5-2=3(cm),AM==9(cm),所以S四边形ABCD==63(cm2).【点睛】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.16、【解析】

先求出到原点的距离,再利用正弦函数定义求解.【详解】因为,所以到原点距离,故.故答案为:.【点睛】设始边为的非负半轴,终边经过任意一点,则:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),当时,;(2)应该种植A种药材【解析】

(1)首先计算和,将数据代入公式得到回归方程,再取得到2020年单价.(2)计算B药材的平均产量,得到B药材的总产值,与(1)中A药材作比较,选出高的一个.【详解】解:(1),,当时,(2)利用概率和为1得到430—450频率/组距为0.005B药材的亩产量的平均值为:故A药材产值为B药材产值为应该种植A种药材【点睛】本题考查了回归方程及平均值的计算,意在考察学生的计算能力.18、(1),;(2)至少经过5年,旅游业的总收入才能超过总投入.【解析】

(1)利用等比数列求和公式可求出n年内的旅游业总收入与n年内的总投入;(2)设至少经过年旅游业的总收入才能超过总投入,可得->0,结合(1)可得,解得,进而可得结果.【详解】(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为=800+800×(1-)+…+800×(1-)n-1==4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元.所以,n年内的旅游业总收入为=400+400×(1+)+…+400×(1+)n-1==1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此->0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n<,由此得n≥5.∴至少经过5年,旅游业的总收入才能超过总投入.【点睛】本题主要考查阅读能力及建模能力、等比数列的求和公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19、(1)(2)【解析】

(1)利用利用诱导公式化简得解析式,可的结果.(2)利用余弦函数的单调性求得函数的单调递增区间.【详解】(1).(2)令,,的单调递增区间为.【点睛】本题考查利用诱导公式化简求值、求余弦函数的单调区间,考查函数与方程思想、转化与化归思想,考查运算求解能力,属于基础题.20、(1)见解析;(2)5;(3)见解析【解析】试题分析:(1)分离系数m,求解方程组可得直线恒过定点;(2)结合(1)的结论可得点到直线的距离的最大值是5;(3)由题意得到面积函数:,注意等号成立的条件.试题解析:(1)证明:直线方程可化为该方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论