2026届湖北省武汉二中高一下数学期末联考试题含解析_第1页
2026届湖北省武汉二中高一下数学期末联考试题含解析_第2页
2026届湖北省武汉二中高一下数学期末联考试题含解析_第3页
2026届湖北省武汉二中高一下数学期末联考试题含解析_第4页
2026届湖北省武汉二中高一下数学期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省武汉二中高一下数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,若对任意的,恒成立,则角的取值范围是()A. B.C. D.2.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位3.与直线平行,且到的距离为的直线方程为A. B. C. D.4.若,则的概率为()A. B. C. D.5.若直线与圆相切,则()A. B. C. D.或6.已知,且,则实数的值为()A.2 B. C.3 D.7.等比数列中,,,则公比()A.1 B.2 C.3 D.48.已知数列的前项和为,且,若,,则的值为()A.15 B.16 C.17 D.189.函数在的图像大致为A. B.C. D.10.已知函数f(x)是定义在上的奇函数,当x>0时,f(x)=2x-3,则A.14B.-114C.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列中,其前项和为,,则_____.12.已知,且,则________.13.已知直线l与圆C:交于A,B两点,,则满足条件的一条直线l的方程为______.14.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______15.已知,,,则的最小值为________.16.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.18.已知数列an的前n项和为Sn,a1(1)分别求数列an(2)若对任意的n∈N*,19.已知等差数列满足,的前项和为.(1)求及;(2)记,求20.设,已知函数,.(1)若是的零点,求不等式的解集:(2)当时,,求的取值范围.21.已知数列an的前n项和为S(1)求数列an(2)设bn=an·log2

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

利用数量积运算可将不等式化简为,根据恒成立条件可得不等式组,利用三角函数知识分别求解两个不等式,取交集得到结果.【详解】当时,恒成立,则当时,即,,解得:,当时,即,,解得:,在时恒成立可得:本题正确选项:【点睛】本题考查三角函数中的恒成立问题的求解,关键是能够根据数量积将恒成立不等式转化为两个三角不等式的求解问题,利用辅助角公式将问题转化为根据正弦型函数的值域求解角的范围的问题.2、D【解析】

根据的图像变换规律求解即可【详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【点睛】本题考查函数的图像变换规律,属于基础题3、B【解析】试题分析:与直线平行的直线设为与的距离为考点:两直线间的距离点评:两平行直线间的距离4、C【解析】

由,得,当时,即可求出的范围,根据几何概型的公式,即可求解.【详解】由,得,当,即当时,,所以的概率为.【点睛】本题考查几何概型的公式,属基础题5、D【解析】

本题首先可根据圆的方程确定圆心以及半径,然后根据直线与圆相切即可列出算式并通过计算得出结果。【详解】由题意可知,圆方程为,所以圆心坐标为,圆的半径,因为直线与圆相切,所以圆心到直线距离等于半径,即解得或,故选D。【点睛】本题考查根据直线与圆相切求参数,考查根据圆的方程确定圆心与半径,若直线与圆相切,则圆心到直线距离等于半径,考查推理能力,是简单题。6、D【解析】

根据二角和与差的正弦公式化简,,再切化弦,即可求解.【详解】由题意又解得故选:【点睛】本题考查两角和与差的正弦公式,属于基础题.7、B【解析】

将与用首项和公比表示出来,解方程组即可.【详解】因为,且,故:,且,解得:,即,故选:B.【点睛】本题考查求解等比数列的基本量,属基础题.8、B【解析】

推导出数列是等差数列,由解得,由此利用能求出的值.【详解】数列的前项和为,且数列是等差数列解得解得故选:【点睛】本题考查等差数列的判定和基本量的求解,属于基础题.9、C【解析】

由解析式研究函数的性质奇偶性、特殊函数值的正负,可选择正确的图象.【详解】易知函数()是偶函数,图象关于轴对称,可排除BD,时,,可排除A.故选C.【点睛】本题考查由函数解析式选择函数图象,解题方法是由解析式分析函数的性质,如单调性、奇偶性、函数的极值、最值、特殊值、函数的值的正负等等.10、D【解析】试题分析:函数f(x)是定义在上的奇函数,,故答案为D.考点:奇函数的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

本题主要考查了已知数列的通项式求前和,根据题目分奇数项和偶数项直接求即可。【详解】,则.故答案为:1.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、裂项相消等。本题主要利用了分组求和的方法。属于基础题。12、【解析】试题分析:由得:解方程组:得:或因为,所以所以不合题意,舍去所以,所以,答案应填:.考点:同角三角函数的基本关系和两角差的三角函数公式.13、(答案不唯一)【解析】

确定圆心到直线的距离,即可求直线的方程.【详解】由题意得圆心坐标,半径,,∴圆心到直线的距离为,∴满足条件的一条直线的方程为.故答案为:(答案不唯一).【点睛】本题考查直线和圆的方程的应用,考查学生的计算能力,属于中档题.14、【解析】试题分析:∵从7人中选2人共有C72=21种选法,从4个男生中选2人共有C42=6种选法∴没有女生的概率是=,∴至少有1名女生当选的概率1-=.考点:本题主要考查古典概型及其概率计算公式.点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.15、1【解析】

由题意整体代入可得,由基本不等式可得.【详解】由,,,则.当且仅当=,即a=3且b=时,取得最小值1.故答案为:1.【点睛】本题考查基本不等式求最值,整体法并凑出可用基本不等式的形式是解决问题的关键,属于基础题.16、4【解析】

由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】试题分析:(1)利用升幂公式及两角和与差的余弦公式化简已知等式,可得,从而得,注意两解;(2)由,得,利用正弦定理得,从而可变为,利用三角形的内角和把此式化为一个角的函数,再由两角和与差的正弦公式化为一个三角函数形式,由的范围()结合正弦函数性质可得取值范围.试题解析:(1)由已知,得,化简得,故或;(2)∵,∴,由正弦定理,得,故,∵,所以,,∴.18、(1)an=3n-1【解析】

(1)设等差数列bn公差为d,则b解得d=3,bn当n≥2时,an=2Sn-1a2=2a1+1=3aan是以1为首项3为公比的等比数列,则.;(2)由(1)知,Sn原不等式可化为k≥6(n-2)若对任意的n∈N*恒成立,问题转化为求数列6(n-2)3令cn=6(n-2)解得52≤n≤7即cn的最大项为第3项,c3=62719、(1),(2)【解析】

(1)利用等差数列的通项公式,结合,可以得到两个关于首项和公差的二元一次方程,解这个方程组即可求出首项和公差,最后利用等差数列的通项公式和前项和公式求出及;(2)利用裂项相消法可以求出.【详解】解:(1)设等差数列的公差为d,(2)由(1)知:【点睛】本题考查了等差数列的通项公式和前项和公式,考查了裂项相消法求数列前项和,考查了数学运算能力.20、(1);(2)【解析】

(1)利用可求得,将不等式化为;分别在和两种情况下解不等式可求得结果;(2)当时,,可将变为在上恒成立;分类讨论得到解析式,从而可得单调性;分别在、、三种情况下,利用构造不等式,解不等式求得结果.【详解】(1)是的零点由得:当时,,即,解得:当时,,即,解得:的解集为:(2)当时,,即:时,在上恒成立①当时,恒成立符合题意②当时,在上单调递增;在上单调递减;在上单调递增当时,,解得:当时,,解集为当时,,解得:综上所述,的取值范围为:【点睛】本题考查含绝对值不等式的求解、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论的方式去掉绝对值符号,结合函数单调性,将问题转化为所求参数与函数最值之间的大小关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论