版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.1.2二次函数y=ax2的图象和性质,知识点一,知识点二,知识点三,知识点一二次函数y=x2的图象和性质 二次函数y=ax2+bx+c的图象是抛物线,对称轴与抛物线的交点叫做顶点,顶点是抛物线的最低点或最高点. 对于特殊的二次函数y=x2,对称轴是y轴,顶点是(0,0),顶点是它的最低点,在对称轴的左侧,抛物线从左到右下降;在对称轴的右侧,抛物线从左到右上升.也就是说,当x0时,y随x的增大而增大. 名师解读:理解和记忆二次函数的性质时,可以从y=x2得到启发,其他二次函数的图象及性质可类比y=x2的图象和性质,主要从开口方向、对称轴、顶点、增减性等几个方面去进行.,知识点一,知识点二,
2、知识点三,例1通过列表、描点、连线的方法画函数y=-x2的图象. 分析:首先列表求出函数图象上点的坐标,进而描点连线画出图象即可. 解:列表,得: 描点,连线如图所示.,知识点一,知识点二,知识点三,画二次函数的图象,列表时取的点越多,图象往往越准确,但是一般采用“五点法”或“七点法”画图,画图时应注意:(1)描点法所画的图象只是整个函数图象的一部分,是近似的,由于x可取一切实数,所以图象是向两方无限延伸的;(2)点取得越多,图象画得越精确,在限定条件下(即限定自变量的取值范围)或在实际问题中,函数的图象必须要根据自变量的取值范围取其中的一部分;(3)所画图象必须平滑(符合点的发展变化的趋势)
3、,尤其是顶点不能画成“尖”形的.,知识点一,知识点二,知识点三,知识点二y=ax2的图象 一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线的开口向上,顶点是抛物线的最低点;当a0时,抛物线的开口向下,顶点是抛物线的最高点.对于y=ax2,|a|越大,抛物线的开口越小. 名师解读:二次函数y=ax2的图象是抛物线,结合图象可知,二次项系数a的符号决定了开口方向,|a|决定了开口的大小.,知识点一,知识点二,知识点三,例2(1)在同一坐标系中,画出下列函数的图象: (2)从解析式、函数的对应值表、函数三个方面对比,说说解析式中二次项的系数a对抛物线的形状有什么影响. 分析:(1
4、)列表、描点、连线,可得函数图象. (2)观察图象即可得出.,知识点一,知识点二,知识点三,解:(1)列表如下:,描点:以表中的数据作为点的坐标在平面直角坐标系中描出各点, 连线:用平滑的曲线连接各点,如图所示.,知识点一,知识点二,知识点三,(2)a的绝对值相同,两条抛物线的形状就相同;|a|越大,抛物线开口越小.,知识点一,知识点二,知识点三,在用描点法画二次函数y=ax2(a0)的图象时,取相应的x与y的值时,应从原点(0,0)开始左右对称地取值.为了描点准确与方便,尽量取坐标为整数的点,其图象是向两方无限延伸的,当选取的点越多时,所画出的图象越精确.,知识点一,知识点二,知识点三,知识
5、点三y=ax2图象的性质 从二次函数y=ax2的图象可以看出:如果a0,当x0时,y随x的增大而增大;如果a0时,y随x的增大而减小. 名师解读:当a0时,理解二次函数的性质可以利用y=x2的图象进行描述,当a0时,可以根据y=-ax2和y=ax2图象的对称性进行对比描述.,知识点一,知识点二,知识点三,例3已知抛物线y=ax2(a0),当a取不同的值时,下列说法正确的是() A.顶点坐标不同B.对称轴相同 C.开口方向一致D.都有最低点 解析:根据二次函数的顶点坐标,对称轴和开口方向以及最高(低)点等,对各选项分析判断利用排除法求解.对于A,不论a为何值,顶点坐标都是(0,0),故本选项错误
6、;对于B,不论a为何值,对称轴为y轴,故本选项正确;对于C,a0,抛物线开口向上,a0,有最高点,a0,有最低点,故本选项错误. 答案:B,知识点一,知识点二,知识点三,解答这类问题时,可借助于y=x2和y=-x2的图象和性质逐一对照(相当于特殊值法),然后再作出判断.,知识点一,知识点二,知识点三,例4已知函数y=ax2的图象过点 . (1)简述函数y=ax2的性质; (2)在其图象上有两点(x1,y1),(x2,y2),且x1x20,比较y1,y2的大小. 分析:(1)把点 代入函数y=ax2的解析式求得a的值,即可判定函数的性质. (2)二次函数y=ax2的对称轴为y轴,由(1)知ax2
7、0,故y1y2.,知识点一,知识点二,知识点三,知识点一,知识点二,知识点三,解答这类比较大小的问题,先确定函数的解析式,再根据二次函数的性质进行解答,也可以利用特殊值法进行判断.,拓展点一,拓展点二,拓展点三,拓展点四,拓展点一二次函数y=ax2解析式的确定 例1已知二次函数y=ax2的图象经过点A(-1,-0.5). (1)求这个二次函数的解析式并画出其图象; (2)请写出这个二次函数的顶点坐标及对称轴. 分析:(1)将点A(-1,-0.5)代入y=ax2即可得到a的值; (2)根据二次函数y=ax2的图象和性质直接写出其顶点坐标和对称轴即可.,拓展点一,拓展点二,拓展点三,拓展点四,解:
8、(1)将点A(-1,-0.5)代入y=ax2得,a=-0.5,故其解析式为y=-0.5x2; 画出其图象如图所示. (2)顶点坐标为(0,0),对称轴为x=0.,拓展点一,拓展点二,拓展点三,拓展点四,由于y=ax2中只有一个未知字母a,所以只需一个条件(图象上一个点的坐标或一对对应值)利用待定系数法就可以确定其解析式.,拓展点一,拓展点二,拓展点三,拓展点四,拓展点二二次函数y=ax2的图象与一次函数的图象共存同一坐标系的问题 例2在同一坐标系中画出一次函数y=ax+a和二次函数y=ax2的大致图象正确的是(),拓展点一,拓展点二,拓展点三,拓展点四,解析:根据a的符号分类,a0时,在A,B
9、中判断一次函数的图象是否相符,a0时,二次函数y=ax2的图象开口向上,一次函数y=ax+a的图象经过第一、二、三象限,排除A;当a0时,二次函数y=ax2的图象开口向下,一次函数y=ax+a的图象经过第二、三、四象限,排除C,D. 答案:B,拓展点一,拓展点二,拓展点三,拓展点四,解答这类问题,一般用排除法,首先根据抛物线的开口方向,确定二次函数二次项系数a的符号,然后再根据一次函数确定a的符号,如果相同,说明可能正确;如果不同,直接排除.按照这种方法逐一判断,直至找出正确答案为止.特别注意个别问题需要再结合一次函数与抛物线的公共点的位置才能确定最后答案.,拓展点一,拓展点二,拓展点三,拓展
10、点四,拓展点三与y=ax2的图象和一次函数图象交点有关的问题 例3,如图,已知抛物线y=ax2(a0)与直线AB交于点P(4,-4),连接OP,OP=AP,求二次函数的解析式及抛物线与直线AB另一个交点B的坐标.,拓展点一,拓展点二,拓展点三,拓展点四,分析:将P点坐标代入抛物线解析式中求出a的值,即可确定出抛物线解析式,过点P作PQOA,则Q(4,0),再根据OP=AP,得A(8,0),设直线AB的解析式为y=mx+n,将A,P坐标代入直线解析式y=mx+n,求出m,n的值,联立两函数解析式求出另一个交点B即可.,拓展点一,拓展点二,拓展点三,拓展点四,拓展点一,拓展点二,拓展点三,拓展点四,解答求二次函数与一次函数图象的公共点的坐标问题时,把两函数的解析式联立组成方程组,方程组的解就是两函数图象的交点坐标,然后再结合其他条件解答相关问题.,拓展点一,拓展点二,拓展点三,拓展点四,拓展点四与y=ax2有关的综合题 例4如图所示,抛物线y=x2与直线y=2x在第一象限内有一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流服务师创新思维强化考核试卷含答案
- 2025年三明学院马克思主义基本原理概论期末考试模拟题附答案
- 口腔修复体制作师安全生产基础知识能力考核试卷含答案
- 搪瓷瓷釉制作工QC管理能力考核试卷含答案
- 燃气具制造工岗后竞赛考核试卷含答案
- 纤维板原料制备工安全教育竞赛考核试卷含答案
- 轧管工岗前创新应用考核试卷含答案
- 2024年湖北大学辅导员招聘备考题库附答案
- 2024年贵州轻工职业技术学院辅导员考试笔试题库附答案
- 2024年莱芜市特岗教师招聘考试真题题库附答案
- 2025年金蝶AI苍穹平台新一代企业级AI平台报告-
- 2025中国机械工业集团有限公司(国机集团)社会招聘19人笔试参考题库附答案
- 浅析煤矿巷道快速掘进技术
- 成人留置导尿标准化护理与并发症防控指南
- 2025年劳动关系协调师综合评审试卷及答案
- CIM城市信息模型技术创新中心建设实施方案
- 班级互动小游戏-课件共30张课件-小学生主题班会版
- 2025至2030全球及中国智慧机场建设行业发展趋势分析与未来投资战略咨询研究报告
- 2025年二级造价师《土建工程实务》真题卷(附解析)
- 智慧农业管理中的信息安全对策
- 2025年河南省康养行业职业技能竞赛健康管理师赛项技术工作文件
评论
0/150
提交评论