舰船液压跳板装置的设计【含CAD图纸+文档资料】
收藏
资源目录
压缩包内文档预览:
编号:99551724
类型:共享资源
大小:2.39MB
格式:ZIP
上传时间:2020-10-23
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
45
积分
- 关 键 词:
-
含CAD图纸+文档资料
舰船
液压
跳板
装置
设计
CAD
图纸
文档
资料
- 资源描述:
-
喜欢这个资料需要的话就充值下载吧。。。资源目录里展示的全都有预览可以查看的噢,,下载就有,,请放心下载,原稿可自行编辑修改=【QQ:11970985 可咨询交流】====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=【QQ:197216396 可咨询交流】====================
- 内容简介:
-
The prospects for the development of mechanical and hydraulic With the continuous development of human society, the land could be open resources depleted, the world is gradually turning to the ocean, open and use of marine resources has played an increasingly important role in the development of countries. Disputes between countries and regions of the resulting friction. Since the beginning of the new century, with the ocean reefs and the scramble for resources intensifies, sea lanes security situation deteriorating situation of the competing interests at sea will be more severe, especially in the United States, Japan, Russia, India and other countries for the growth of the Navy adopted a multi- kinds of measures, warlords contend situation. In the era of full implementation of the open sea background conditions, the the Navy shoulder the sacred mission to safeguard national security, to defend its sovereignty, safeguard national maritime rights and interests. At the same time due to the growing economic situation of our country and our increasingly powerful military technology, and the outside world has gradually close up. However, China has a relatively wide field of ports, maritime transport is the best way to contact the outside world. Maritime traffic will be used in ships, land contact must use the springboard, so I will be the springboard device design. Springboard as their own ship an important part of the ship close to the shore, can be used as the access bridge support equipment. Reality we have seen boarding ladder gives us the feeling is very heavy, inconvenient for cruise ships is feasible, but if for aircraft carriers or warships, it certainly does not meet the requirements (once the pier is not it will cause trouble), it is necessary to develop a lightweight and convenient and safe to be able to adapt to a military boarding ladder system, this is my topic have to do to achieve the requirements. I designed a springboard device not only designed a number of mechanical transmission, hydraulic transmission still in the original basis. With hydraulic drive of the outstanding advantages: easy to implement frequent starting, commutation and variable speed, and less impact on the ships power plant; inertia, high precision position control; force and torque of the output can be large, but the line speed and the speed can be very low, very small size and weight; wide speed range. Therefore, the hydraulic drive is now widely used in all types of vessels. The issue is Chinas first aircraft carrier, the hydraulic design of the boarding ladder. Springboard (boarding ladder) is mainly used for warships to the pier and weight limit supplies through or migrate. The boarding ladder system to the electric can also be manually manually by hand pump, the use of the hand pump is designed to prevent the boarding ladder in case of power failure can not be used. In recent years, Chinas national economy maintained a momentum of rapid development, major national infrastructure projects in full swing, the sustainable development of domestic agricultural machinery, construction machinery, aviation, railway, highway, automobile, shipbuilding and other industries, strong demand for production and construction will drive the continued growth of the hydraulic technology.By the early 2000s, the general trend of development of the machinery manufacturing industry as the four modernizations: (1) Flexibility: the process equipment and process route can be applied to the needs of the production of a variety of products, can be applied to the rapid replacement of the process, replace the product needs; (2) Agile: products to market for the shortest preparation time reduction, machinery factory steering mechanism flexibility; (3) Intelligent: an important part of the flexible automation, it is a new development and extension of the flexible automation. Humans not only to get rid of the heavy manual labor, but also from the tedious calculations, analysis of mental liberation, in order to have more energy to engage in high-level creative work. The intellectualized promote flexible production system has better judgment and ability to adapt. The early 2000s, the upgrading of products will continue to speed up a wide variety of needs increasing. According to the statistics of the United States, Japan and Europe and other developed countries, from 1975 to 1995, the type of mechanical parts increased by 40% to 50%, from 75% to 85% of the staff do not deal directly with the material, turn to deal with the information. 80% to 88% of the activity does not directly increase the value-added products, product process, organization and management of increasingly complex. Design, process preparation work about ordering more than 60% of the total time for the completion of the user. On the other hand, in the fierce market competition, supply and product quality often plays a more important role than price. Agility is a major issue in front of the machinery manufacturing industry. Technically to achieve the flexibility, to bring about change in the organization of production, these are machinery manufacturing enterprises urgent event; (4) information technology: machinery manufacturing industry will no longer matter and energy by means of the power of information to produce value, but by the help of the power of matter and energy production value. Therefore, the information industry and intelligence industry will become the leading industry of the society. Machinery manufacturing will also be led by the information, and the use of advanced production mode, new mechanical manufacturing of advanced manufacturing systems, advanced manufacturing technology and advanced organizational management way. The beginning of the 21st century, an important feature of the machinery manufacturing industry in its globalization, networking, virtualization, intelligent and green environmental protection coordination manufacturing. I designed a springboard device not only designed a number of mechanical transmission, hydraulic transmission still in the original basis. With hydraulic drive of the outstanding advantages: easy to implement frequent starting, commutation and variable speed, and less impact on the ships power plant; inertia, high precision position control; force and torque of the output can be large, but the line speed and the speed can be very low, very small size and weight; wide speed range. Therefore, the hydraulic drive is now widely used in all types of vessels. A complete hydraulic system consists of five parts, namely, power components, actuators, control components, auxiliary components (Annex), and hydraulic oil.Power componentsThe role of the power element is the prime mover mechanical energy is converted into fluid pressure, means of pumps in the hydraulic system, it provides power to the entire hydraulic system. Hydraulic pump structure generally in the form of gear pumps, vane pumps and piston pumps.ActuatorActuators (such as hydraulic cylinders and hydraulic motors) pressure of the liquid can be converted to mechanical energy to drive the load for linear reciprocating or rotary motion.Control componentsThe control element (i.e., the various hydraulic valves to control and regulate the pressure of the liquid, flow rate and direction) in the hydraulic system. According to the different control functions, hydraulic valves can be divided into the pressure control valves, flow control valves and directional control valves. Pressure valve (safety valve) is divided into benefits flow control valve, pressure reducing valves, sequence valves, pressure relay; flow control valve includes a throttle valve, regulating valve, flow diversion valve; directional control valve includes a one-way valve, pilot-operated check valve, shuttle valve, valve. Depending on the control mode, the hydraulic valves can be divided into the switch control valve setpoint control valves and proportional control valve.Auxiliary componentsAuxiliary components including fuel tanks, filters, tubing and fittings, seals, quick-change fittings, high pressure ball valve, hose assemblies, pressure joints, pressure gauge, oil level, oil temperature meter.Hydraulic oilThe hydraulic oil is the energy transfer in the hydraulic system of the working medium, a variety of mineral oil, emulsion, oil hydraulic molding Hop several categories. A little mechanical knowledge all know, the energy will be converted to each other, and to use this knowledge to explain the power loss of the hydraulic system on the hydraulic system is best, however, the hydraulic system power on the one hand will cause energy loss, so that the system the overall efficiency is decreased, on the other hand, lose this part of the energy will be transformed into heat, so that the temperature rise of the hydraulic oil, oil deterioration, resulting in hydraulic equipment failure. Therefore, the design of the hydraulic system, meet the requirements, but also give full consideration to reduce the power loss of the system. First, from the power source - pump to consider, taking into account the diversification of the actuator working conditions, high flow, low pressure system sometimes needs; sometimes need small flow and high pressure. So I chose to limit pressure variable displacement pump is appropriate, because this type of pump flow varies with changes in system pressure. When the system pressure is reduced, the flow rate is relatively large, can meet rapid stroke of the actuator. Flow when the system pressure increases and decreases accordingly, to meet the working stroke of the actuator. This will not only meet the requirements of the actuator, but also make more reasonable power consumption.Second, hydraulic oil flowing through the various types of hydraulic valves inevitable existence of pressure loss and flow losses, account for a large proportion of this part of the energy loss in the total energy loss. Therefore, a reasonable selection hydraulic pressure valve to adjust the pressure is also an important aspect to reduce the power loss. Flow valve system flow adjustment range to select and to ensure that the minimum stable flow to meet the requirements, the pressure of the pressure valve in the hydraulic equipment to meet the normal work of the case, try to take a lower pressure. If the actuator has a governors request, then select the speed control loop, it is necessary to meet the requirements of the governor, but also minimize power loss. Common speed control loop: Throttling Speed Control Circuit, volume, speed control loop, the volume throttle speed control loop. Throttling Speed loop power loss, low-speed stability. Volume speed control loop is neither overflow losses, no throttling losses, high efficiency, low-speed stability. If you want to meet both requirements at the same time, can be used differential pressure variable volume pump and throttle control Circuits, and to the differential pressure across the throttle as small as possible in order to reduce the pressure loss. Fourth, a reasonable choice of hydraulic oil. The hydraulic oil flowing in the pipeline, will appear in the stickiness, while excessive stickiness will be generated when a greater internal friction, resulting in fluid heat, while increasing the resistance to fluid flow. When the viscosity is too low, could easily lead to leakage, and will reduce the volumetric efficiency of the system, therefore, generally choose the suitable viscosity and viscosity-temperature characteristics of good oil. Further, when the fluid flow in the pipeline, but also there is frictional pressure loss and the loss of partial pressure of as short as possible, therefore the design of conduit pipe, while reducing elbow. Is to avoid the above referred Some work in the hydraulic system power loss, but the factors affecting the power loss of the hydraulic system there are many, so when the particular design of a hydraulic system needs to be consolidated to consider various other requirements.1) pollution and wear of components Oil pollutants caused by the wear and tear of the components of various forms of solid particles into motion pair gap, cutting wear or fatigue wear on the surface of the part. High-speed flow of solid particles on the surface of the impact of the components caused by erosive wear. Oil in the water and oil oxidative deterioration of product components have a corrosive effect. In addition, the oil in the air caused by cavitation, resulting in the element surface erosion and destruction.2) element clogged with clamping failure Based on the parameters measured fault diagnosis system is a hydraulic system is working properly, the key depends on two main operating parameters of pressure and flow is in normal working condition, as well as speed and other parameters of the system temperature and actuators is normal or not. The hydraulic system failure phenomenon is a variety of the cause of the malfunction is a combination of factors. The same factors may cause different symptoms, the same fault may correspond to a variety of different reasons. For example: oil pollution may cause failure of the hydraulic system pressure, flow direction, which brought great difficulties to the hydraulic system fault diagnosis. Parameter measurement of fault diagnosis thinking is this, any hydraulic system is working properly, the system parameters to work around the design and setting work if these parameters deviate from the predetermined value, the system will malfunction or may occur malfunction. Hydraulic system failure of the essence of the abnormal changes of the system operating parameters. Therefore, when hydraulic system failure occurs, must be a component of the system or some of the elements of the fault loop a certain point or certain points of the parameter has deviated from a predetermined value, and further it can be concluded. This shows that the operating parameters of a point in the hydraulic circuit is not working properly, the system has a malfunction or failure may occur, require maintenance personnel immediately processed. So on the basis of the parameters measured, combined with logical analysis, you can quickly and accurately identify the fault lies. Parameter measurement method can not only diagnose system failures, but also forecast failures that may occur, and this prediction and diagnosis are quantitative, greatly improving the speed and accuracy of diagnosis. This detection for the direct measurement of speed, and error is small, the testing equipment is simple, easy to promote the use of the production site. Suitable for the detection of any hydraulic system. Measurement without stopping, without damaging the hydraulic system, almost any part of the system to detect not only the existing fault diagnosis and online monitoring, forecasting potential failures.Parameter measurement principle Long as required at any point in the the measured hydraulic system circuit operating parameters will be compared with the normal operation of the system can Analyzing system operating parameters is normal, whether the site where the occurrence of a fault and the fault. Hydraulic system operating parameters, such as pressure, flow, temperature, and all non-electrical physical quantity, using indirect measuring method with General Instrument, first of all need to take advantage of the physical effects of these non-power is converted into electricity, and then enlarged, conversion and display The converted electrical signal processing, the measured parameter for availability Representative and displayed. Which can determine the hydraulic system is faulty. However, this indirect measurement methods need a variety of sensors, the detection device is more complex, the measurement error is not intuitive, not easy site to promote the use of.The advantages of hydraulicCompared with mechanical transmission, electric drive, hydraulic drive has the following advantages:1, the various components of the hydraulic transmission, can be easily and flexibly arranged.2, light weight, small size, small inertia, fast response.3, manipulation easy to control, can achieve a wide range of variable speed .4, automatic overload protection.5, generally use mineral oil as the working medium, the relative motion of surface lubrication, long service life.6, it is easy to achieve linear motion.7, it is easy to realize automation of the machine, not only to achieve a higher degree of automatic control process, when the electro-hydraulic joint control, but also can realize the remote control.机械与液压的发展前景随着人类社会的不断发展,陆地可开放资源日渐枯竭,世界各国逐渐将目光转向海洋,海洋资源的开放及利用对各国的发展起到了越来越重要的作用。由此引起的国家及地区间争端、摩擦不断。进入新世纪以来,随着海洋岛礁及资源争夺的加剧,海上运输线安全形势日趋恶化,海上利益争夺的形势将更加严峻,尤其是美、日、俄、印等国家,为壮大海军采取多种措施,已出现群雄争锋的局面。在全面实施海洋开放的时代背景条件下,海军肩负着维护国家安全,捍卫主权、维护国家海洋权益的神圣使命。同时由于我们国家日益发展的经济情况还有我们日益强大的军事技术,我们和外界的联系也渐渐的紧密起来了。但是由于我国有着较为宽广的港口领域,所以海上交通便是我们和外界取得联系的最好方式。但是海上交通就一定会用到轮船,而与陆地取得联系就一定要用到跳板了,所以我便对这种跳板装置进行了一些设 计。跳板作为自行轮船重要的组成部分,可以在轮船靠近岸边时,可以作为被保障装备通行的桥梁。 现实当中我们看到的登船梯给我们的感觉是很笨重,不方便,如果用于游船是可行的,但是如果用于航母或军舰的话,那肯定不能符合使用要求了(一旦码头情况不允许那就会带来麻烦),所以必须研制出一种既轻巧方便又安全能适应军用的登船梯系统,这就是我的课题所要做达到的要求。我所设计的跳板装置不仅设计了一些机械传动,还在原有的基础上采用了液压传动。采用液压传动的突出优点是:易于实现频繁的起动、换向和变速,且对船舶电站的影响较小;惯性小、位置控制精度较高;输出的力和转矩可以很大,但线速度和转速可以很低,体积和重量却很小;调速范围广。因此,液压传动现已广泛应用在各类船舶上。本课题是我国首艘航母上液压登船梯的设计。跳板(登船梯)主要用于军舰与码头之间人员及限重物资通过或迁移。本登船梯系统即可电动也可手动,手动是通过手摇泵来实现的,手摇泵的运用是为了防止断电情况下登船梯不能使用而设计的。近年来,我国国民经济继续保持了快速发展的态势,国家重大基础设施工程已全面铺开,国内农用机械、工程机械、航空、铁路、公路、汽车、造船等行业持续发展,旺盛的生产建设需求将带动液压技术的持续增长。21世纪初,机械制造业总的发展趋势为“四化”: (1)柔性化:使工艺装备与工艺路线能适用于生产各种产品的需要,能适用于迅速更换工艺、更换产品的需要; (2)敏捷化:使产品推向市场准备时间缩为最短,使机械制造厂机制能灵活转向; (3)智能化:柔性自动化的重要组成部分,它是柔性自动化的新发展和延伸。人类不仅要摆脱繁重的体力劳动,而且还要从繁琐的计算、分析等脑力劳动中解放出来,以便有更多的精力从事高层次的创造性劳动。智能化促进柔性化,它使生产系统具有更完善的判断与适应能力。 21世纪初,产品的更新换代将不断加快,各种各样的需要不断增加。据美国、日本和欧洲等发达国家的统计,19751995年机械零件的种类增加了4050,而7585的工作人员不直接与材料打交道,转与信息打交道。8088的活动不直接增加产品附加值,产品工艺过程、组织管理日益复杂化。设计、工艺准备等项工作约占为完成用户订货总时间的60%以上。另一方面,在激烈的市场竞争中,供货期与产品质量往往起着比价格更为重要的作用。敏捷化已是在机械制造业面前的重大课题。在技术上要实现柔性化,在生产组织上要实现变革,这些都是机械制造企业刻不容缓的大事; (4)信息化:机械制造业将不再是由物质和能量借助于信息的力量生产出价值,而是由借助于物质和能量的力量生产出价值。因此,信息产业和智力产业将成为社会的主导产业。机械制造也将是由信息主导的,并采用先进生产模式、先进制造系统、先进制造技术和先进组织管理方式的全新的机械制造业。21世纪初,机械制造业的重要特征表现在它的全球化、网络化、虚拟化、智能化以及环保协调的绿色制造等。我所设计的跳板装置不仅设计了一些机械传动,还在原有的基础上采用了液压传动。采用液压传动的突出优点是:易于实现频繁的起动、换向和变速,且对船舶电站的影响较小;惯性小、位置控制精度较高;输出的力和转矩可以很大,但线速度和转速可以很低,体积和重量却很小;调速范围广。因此,液压传动现已广泛应用在各类船舶上。一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。动力元件动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。执行元件执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。控制元件控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。辅助元件 辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。液压油液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。有一点机械常识的人都知道,能量会互相转换的,而把这个知识运用到液压系统上解释液压系统的功率损失是最好不过了,液压系统功率一方面会造成能量上的损失,使系统的总效率下降,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。