关于我国放开计划生育政策影响的研究_第1页
关于我国放开计划生育政策影响的研究_第2页
关于我国放开计划生育政策影响的研究_第3页
关于我国放开计划生育政策影响的研究_第4页
关于我国放开计划生育政策影响的研究_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于我国放开计划生育政策影响的研究 摘要 本文是一个人口结构预测问题。我们通过查找资料,运用 Leslie 模型、道 格拉斯经济模型、线性拟合等方法建立数学模型给出了人口结构预测结果并分 析了其影响。 针对问题一,利用 Leslie 模型,以十年为一个周期,首先由 2000 年第五 次人口普查数据对 2010 年的人口年龄结构进行预测,将预测结果与 2010 年第 六次人口普查数据作对比,确定了该模型的可行性与我们构造的 L 矩阵的高可 信度。在放开二胎政策情况下,通过查阅资料了解到如今适龄青年的生育观念, 由此对于生育率进行适当的调整,构造出在放开二胎条件下的 L矩阵。由此 分别建立起了在计划生育政策条件下和开放单独二胎条件下的人口结构预测模 型,以十年为间距,分两种政策条件预测出了我国 2020 年、2030 年、2040 年、 2050 年和 2060 年的人口年龄结构,进一步分析出了老龄化程度。 针对问题二,由第一题的年龄分组矩阵,我们着重对经济与教育进行了讨 论。对于经济,我们通过建立道格拉斯经济增长模型分析出了劳动力与经济增 长之间的关联性。查阅资料可以得到今后三十年江苏省经济发展趋势,进一步 可以分析得出计划生育政策与放开二胎政策两种条件下今后三十年人口对经济 增长的贡献程度,两者对比从而得出开放二胎政策对于经济的影响程度。对于 教育,我们通过分析二十岁以下适龄入学人数的变化趋势分析出开放二胎对于 现行教育的压力,通过比较计划生育政策与放开二胎政策两种条件下的适龄入 学人数的区别分析出不同政策对于教育的影响程度。 针对问题三,我们通过在不同时间点对 Leslie 模型中的年龄分组向量进行 不同矩阵的混合叠加得到不同时期开放二胎政策得到的人口年龄分组矩阵,进 一步可以得到老龄化率。经过查询相关资料得到国际公认的 0.3 重度人口老龄 化率警戒线,将其与各数据进行对比,找到老龄化率突破警戒线的时间临界点, 从而推出最佳开放二胎政策的时间。 最后,本模型将所得结果以表格形式给出,并附上各模型的计算程序,从 结果看,本文模型对未来五十年的人口结构和经济增长预测较好。 关键词:人口结构 Leslie 模型 道格拉斯函数 计划生育 单独二胎 一、 问题重述 我国是一个人口大国,计划生育政策实施以来,对控制我国人口过快增长 和有效缓解人口对资源环境的压力功不可没。然而随着社会经济的进一步发展, 我国人口面临新的问题:一方面,人口红利消失、临近超低生育率水平、人口 老龄化、出生性别比失调等等,要求我们需要放开计划生育的约束;另一方面, 过快增长的人口对于住房、教育、环境资源等又来来更多的压力。2011 月 15 日, 中共中央关于全面深化改革开放若干重大问题的决定终于出台了。 决 定中关于逐步放开二胎的政策引起了人们的热议。目前,根据决定中的 政策,许多省份已经逐渐放开了计划生育的约束,开始实行“单独二胎”政策, 即夫妻双方有一方为独生子女,就允许生第二胎。 针对上述思考,本文着重解决和回答了以下三个问题: 1、通过分析相关数据,建立数学模型,预测了 2060 年我国人口数及人口结构、 以及老龄化程度。 2、通过相关数据的分析,根据江苏的实际情况,建立起合理的评价体系,并通 过相应的数学模型阐明“单独二胎”对江苏(人口、经济、住宅、教育等)的 影响。 3、对我国完全放开二胎政策的必要性进行评估,并对何时放开二胎政策的合适 时间进行预测。 二、 模型假设 (1)查找的数据资料能够正确反映当前社会的真实情况; (2)放宽二胎后人口出生率上升为一恒定常数; (3)政策执行中出现的违法特例可以忽略; (4)不考虑移民对总人口的影响; (5)在预测人口模型中各项指标均在自然资源和环境的承载能力之中; (6)不考虑战争、重大自然灾害等因素对人口结构的影响; (7)仅从经济增长的角度看待经济发展,忽略其他因素。 三、 模型符号说明 L:计划生育政策下的 Leslie 矩阵 X(k):计划生育政策下第 20k0 年女性人口按年龄分布矩阵 X*(6):计划生育政策下第 2060 年人口按年龄分布矩阵 L:开放二胎政策下的 Leslie 矩阵 X(k): 开放二胎政策下第 20k0 年女性人口按年龄分布矩阵 X*(6):开放二胎政策下第 2060 年人口按年龄分布矩阵 :劳动资本 :劳动产出弹性 Y:生产函数 A:技术进步 K:固定资产投资 l:就业人口 3 四、 模型建立与求解 4.1 问题一 4.1.1 问题分析 问题一是一个关于未来几十年人口结构预测的问题。人口结构主要包含五个 方面:人口总数、出生率、死亡率,年龄结构、性别比例,其他因素对人口结 构的影响都是通过这些因素来体现的。因为人口结构变化复杂,影响因素较多, 变化趋势不明朗,但是我们能够发现其中性别比例变化趋势不明显;出生率主 要与政策导向有关;死亡率随经济发展水平成反比,与老龄化率成正比,这里 我们认为一定时间内死亡率不变。我们通过分析在计划生育与开放二胎两种政 策条件下出生率的不同,通过对出生率的调整建立起 Leslie 模型,借由第四次 与第五次全国人口普查数据对 2060 年我国人口结构进行预测。 4.1.3 模型可信度分析 在 Leslie 模型中,种群的数目是通过雌性个体数目来体现的。通过查阅相 关资料,我们发现中国人口中的男女比例在较长一段时间内均保持在 105:100 左右,故我们有理由认为在今后较长一段时间内,国内的男女比例不会出现较 大的变化。这里我们取男女比例为常数 1.05。 通过查阅第五次人口普查的资料,我们可以得到下表: 表一:2000 年全国各年龄段女性人口、生育率、死亡人数及死亡率 年 龄 层 09 1019 2029 3039 4049 5059 6069 7079 8089 9099 女 性 人 数 76211 770 10854 4546 10627 5741 11168 9626 80612 873 5142 5312 3671 3269 2092 7887 6181 854 5765 25 生 育 率 0.00 0.003 46123 7 0.101 98784 9 0.016 35391 4 0.001 10220 1 0.00 0.00 0.00 0.00 0.00 死 亡 人 数 24317 5 72422 83831 11988 9 17237 5 2692 50 5487 82 8940 56 6881 56 1400 43 死 亡 率 0.003 19078 0.000 6672 0.000 7888 0.001 0734 0.002 138 0.00 5236 0.01 4948 0.04 2721 0.11 1319 0.24 2909 注:1、其中 100 岁以上老人占中国总人口比例约为 0.001%,可以忽略不计; 2、该表格中生育率是在计划生育政策条件下统计得出的,使用的是 2010 年生育率(见表二) ,我们默认这十年内各年龄段的生育率的改变可以忽略不计。 以上表格中的生育率为一年以内的数值,我们将其乘以系数 a 来模拟十年 内各年龄段女性的生育率。这里我们取 a=2,这样我们可以得到以下 L 矩阵: = 0 0.0060.2020.0320.0020 0 0 0 00.9990 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0.9990 0 0 0 0 00 0 0 0 0.9990 0 0 0 0 0 0 0 0 0 0.9990 0 0 00 0 0 0 0 0 0.9980 0 0 0 0 0 0 0 0 0 0.9960 00 0 0 0 0 0 0 0 0.8880 由表一我们可以得到 2000 年人口年龄结构初始状态向量为: X(0)=(7.62,10.85,10.63,11.17,8.06,5.14,3.67,2.09,0.62,0.06) 单位:107 人 通过 Leslie 模型的递推式: X(k)=Lk*X(0) 此时我们可以对十年后,也就是 2010 年的人口年龄结构在 a=2 情况下进行 预测,可以得到以下结果: X(1)=(2.63,7.60,10.85,10.62,11.16,8.04,5.12,3.62,2.00,0.01) 单位:107 人 通过查阅第六次人口普查的资料,我们可以得到下表: 表二:2010 年全国各年龄段女性人口、生育率、死亡人数及死亡率 年 龄 层 09 1019 2029 3039 4049 5059 6069 7079 8089 9099 女 性 人 数 66886 928 82625 469 11358 0759 10525 1236 11296 3421 78619 473 49197 667 29142 218 10887 814 12996 98 死 亡 人 数 24034 20226 61311 66305 150327 280031 469746 905813 907784 226958 死 亡 率 0.000 35932 0.000 24479 0.000 53980 0.000 62996 0.001 33075 0.003 56185 0.009 54813 0.031 0825 0.083 37614 0.174 62364 生 育 人 口 0 285986 11583857 1721269 124508 0 0 0 0 0 生 育 率 0 0.003 46123 7 0.101 98784 9 0.016 35391 4 0.001 10220 1 0 0 0 0 0 5 由此我们可以得到 2010 年人口年龄结构状态向量为: X0(1)=(6.69,8.26,11.36,10.52,11.30,7.86,4.92,2.91,1.09,0.13) 将 X(1)与 X0(1)作对比,计算两向量之间的欧氏距离 d,可以得到: e=d/|X0(1)|=0.040 我们发现通过 Leslie 矩阵拟合所得到的 2010 年人口年龄结构数据和实际 数据的误差在可接受范围之内,所以我们认为这种预测方法值得我们信任,a=2 的取值也能够在一定程度上反映真实情况,故可以用它来预测今后几十年我国 的人口年龄结构分布。 4.1.4 模型的建立与求解 我们可以使用以上方法预测到 2020 年、2030 年、2040 年、2050 年和 2060 年的我国的女性人口年龄结构分布如下: X(2)=(2.64,2.62,7.59,10.84,10.60,11.13,8.00,5.04,3.46,1.78) X(3)=(1.94,2.63,2.62,7.59,10.83,10.59,11.08,7.88,4.82,3.08) X(4)=(0.82,1.94,2.63,2.61,7.58,10.80,10.53,10.91,7.55,4.29) X(5)=(0.65,0.82,1.94,2.63,2.61,7.56,10.75,10.37,10.44,6.70) X(6)=(0.49,0.65,0.82,1.94,2.62,2.61,7.52,10.59,9.93,9.28) 单位:107 人 考虑到男女比例,据此我们预测到 2060 年在计划生育条件下我国人口年龄 结构如下图表所示: X*(6)=(1.01,1.33,1.68,3.97,5.38,15.42,21.70,2036,19.03) 单位:107 人 即: 1.0086 1.33045 1.68305 3.96675 5.3751 5.34025 15.4201 21.70335 20.3565 19.0281 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 年 龄 分 段 人 数 (107 人 ) 图一:计划生育政策下 2060 年人口年龄结构 且在今后几十年中,在执行计划生育政策前提下,我国总人口变化趋势为: 12.634355 13.060345 12.92402 12.22989 11.167785 9.521225 1 2 3 4 5 6 0 2 4 6 8 10 12 14 年 份 人 口 数 ( 亿 ) 图二:计划生育政策下 2010 年至 2060 年我国总人口走势 当放开二胎政策时,放宽一胎政策影响的是人口的出生率,通过查找相关 资料,我们得到当今大学生的生育观念。统计显示,如果放宽人口政策,有 1/4 的人表示一定会生二胎;有 1/3 的人表示假如经济情况允许,会选择生两 胎;还有 5/12 的人表示不会改变生一胎的决定;生两胎或不生孩子的人数几乎 没有,在这里不考虑在内。 将以上生育意愿比例考虑在内,我们将生育率系数由计划生育政策下的 a=2 调整为开放二胎情况下的 a=3.8,则得到 L矩阵为: = 0 0.0110.3840.0610.0040 0 0 0 00.9990 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0.9990 0 0 0 0 00 0 0 0 0.9990 0 0 0 0 0 0 0 0 0 0.9990 0 0 00 0 0 0 0 0 0.9980 0 0 0 0 0 0 0 0 0 0.9960 00 0 0 0 0 0 0 0 0.8880 类似的,由 L矩阵我们可以预测到在放开二胎政策之后我国的女性人口 年龄结构变化,其结果如下所示: X(1)=X(1) X(2)=(5.01,4.97,7.59,10.84,10.61,11.13,8.00,5.04,3.46,1.78) X(3)=(3.73,4.99,4.97,7.59,10.83,10.59,11.08,7.88,4.82,3.08) X(4)=(2.51,3.71,4.99,4.97,7.58,10.80,10.53,10.91,7.55,4.29) X(5)=(2.32,2.50,3.71,4.99,4.96,7.56,10.75,10.37,10.44.6.71) X(6)=(1.80,2.32,2.50,3.71,4.98,4.95,7.52,10.59,9.93,9.28) 单位:107 人 考虑到男女比例,据此我们预测到 2060 年在计划生育条件下我国人口年龄 结构如下图表所示: X*(6) 7 =(3.69,4.75,5.12,7.60,10.21,10.15,15.42,21.70,20.36,19.03) 单位:107 人 即: 3.6941 4.7478 5.12295 7.6014 10.2110510.1475 15.4201 21.70335 20.3565 19.0281 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 年 龄 分 段 人 数 (107 人 ) 图三:放开二胎政策下 2060 年人口年龄结构 且在今后几十年中,在执行计划生育政策前提下,我国总人口变化趋势为: 12.6343 14.029585 14.25652 13.906175 13.18437 11.803285 1 2 3 4 5 6 0 2 4 6 8 10 12 14 16 年 份 标 题 人 口 数 ( 亿 ) 图四:放开二胎政策下 2010 年至 2060 年我国总人口走势 由图一与图三我们能够发现我国在 2060 年的老龄化率达到了一个较高的水 平,关于这一点我们将会在第三问中进行进一步的讨论。 4.2 问题二 4.2.1 问题分析 问题二是一个关于人口结构与几个重要社会指标的关联性预测与评价的问 题,其中人口模型在问题一中已经阐述,这里我们着重考虑经济与教育的影响。 我们通过查阅资料并结合实际情况认为由问题一我们可以通过分析在计划生育 与放开二胎两种政策条件下出生率的不同,通过对出生率的调整建立起两种情 况下的 Leslie 模型,分别对在单独二胎政策与计划生育政策下的人口结构进行 分析与估计,找出与今后几十年内江苏省经济、教育的预测值的关联,再对两 种情况的结果进行比较,实际说明单独二胎政策对于江苏省的影响。 4.2.2 经济模型的建立与求解 由问题一的求解过程我们知道了在实行计划生育与放开二胎两种政策下我 国人口的发展趋势 表三:江苏省近几年经济数据及今后几十年经济数据 年份 GDP/万亿元 年份 GDP/万亿元 2000 1.033 2021 26.58 2001 1.143 2022 28.88 2002 1.281 2023 31.481 2003 1.503 2024 33.526 2004 1.813 2025 35.46 2005 2.270 2026 37.359 2006 2.727 2027 38.705 2007 3.422 2028 40.089 2008 4.461 2029 41.625 2009 5.044 2030 43.126 2010 6.119 2031 44.502 2011 7.604 2032 45.859 2012 8.832 2033 47.031 2013 10.065 2034 48.251 2014 11.460 2035 49.401 2015 13.084 2036 50.802 2016 15.235 2037 52.111 2017 17.583 2038 53.427 2018 19.600 2039 54.76 2019 22.129 2040 55.025 2020 24.425 引入科布道格拉斯生产函数模型: tYAKL 其中 Y 是生产函数,A 代表技术进步,K 表示固定资产投资,L 表示就业人 口,、 分别代表资本和劳动的产出弹性。根据 , 的组合情况,它有三 种类型:1, 称为递增报酬型,表明按现有技术用扩大生产规模来增 加产出是有利的。1, 称为递减报酬型, 表明按现有技术用扩大生产规 模来增加产出是得不偿失的。1, 称为不变报酬型,表明生产效率并 不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益。 为了简化整个模型的分析过程,我们可以对此模型两边同时取自然对数, 于是原模型公式变形为下式: 9 lnllnYKLC 我们采用最小二乘法对方程进行回归,得到生产函数为: l9.730.697l0.13ln 根据上述分析得到,资本产出弹性 0.69766,表明资本投入 1的增长, 可以导致总产值 0.69766的增长,而劳动产出弹性系数 0.0130表明: 劳动投入 1的增长,可以导致地区生产总值 0.013的增长。而 1, 为递减报酬型,表明按现有技术用扩大生产规模来增加产出是得不偿失的。 考虑到人口对经济的影响,我们得到以下数据: 6.119 24.425 43.126 55.025 2010 2020 2030 2040 0 10 20 30 40 50 60 0.73254 0.75748 0.74936 0.70876 0.76038 0.81374 0.82708 0.8062 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 GDP/万 亿 元 计 划 生 育 人 口/ 亿 放 开 二 胎 人 口/ 亿 图五:今后几十年江苏省人口与 GDP 预测数据 在 2010 年到 2040 年的这段时间里,人口的变化相对来说比较平稳,计划 生育政策下与放开二胎政策下人口的年平均变化率的差距已不足 1,结合道 格拉斯模型中得出的结论:“劳动投入 1的增长,可以导致地区生产总值 0.013的增长” ,得出人口变化对经济的影响幅度小于 0.013。 而在截止 2040 年的江苏省经济预测数据中,相对于 2010 年来说,2040 年 江苏省 GDP 的增幅为 8.99 倍,平均每年增幅为 7.80%,远大于人口对经济的影 响幅度。据此我们认为放开二胎对经济总量的影响可以忽略不计。 通过查阅相关资料我们得知经济发展的“三驾马车”是投资、消费与出口, 其中消费与人口的相关性最强。但就江苏省的情况而言,经济发展主要依靠的 是固定资产投资,故仅仅依靠放开二胎来增加消费额对 GDP 以至于总体经济形 势的影响是微不足道的。 4.2.3 教育模型的建立与求解 教育模型中我们主要考虑适龄入学人口数目的变化对教育的压力。通过第 一问的分析我们可以得到计划生育政策下与开放二胎政策下两种情况的二十岁 以下人口数目,结果如下表所示: 表四:计划生育政策下今后三十年适龄入学人口数据 2010 年 2020 年 2030 年 2040 年 总人数/亿 12.63 13.06 12.92 12.22 适龄入学人 数/亿 3.06 1.08 0.94 0.57 适龄入学比 例 0.24228 0.082695 0.072755 0.046645 表五:放开二胎政策下今后三十年适龄入学人口数据 2010 年 2020 年 2030 年 2040 年 总人数/亿 12.63 14.03 14.26 13.91 适龄入学人 数/亿 3.06 2.05 1.79 1.36 适龄入学比 例 0.24228 0.146115 0.125526 0.097771 由上表我们可以做出两种政策条件下适龄入学人口数目的对比图: 2010年 2020年 2030年 2040年 1 2 3 4 5 6 7 计 划 生 育 放 开 二 胎 年 份 适 龄 入 学 人 数/ 亿 图六:两种政策条件下今后三十年全国适龄入学人口数目比较 由以上对比图可以看到在两种政策之下适龄入学人口数目发生了较大的差 异,三十年内二者最大相差达到了 2.89 倍。我们据此认为放开二胎的政策将会 给我国教育事业带来一定的不可忽略的压力,江苏省作为教育大省也不能例外。 4.2.4 关于住宅问题的思考 针对问题二中提及的住宅问题,我们认为无论从人均住房面积还是房价来 考虑,影响因子中国家政策导向都占据了很大一部分,而纯粹的数学模型难以 预测国家政策的干预,故在此不予讨论。 4.3 问题三 4.3.1 问题分析 问题三需要我们讨论分析放开二胎政策的必要性与放开二胎政策的时间。 我们通过前两个问题的求解可以分析得出计划生育与放开二胎两种政策条件下 11 的人口老龄化率随时间的函数,通过查询相关资料了解到国际上公认的人口老 龄化率适宜范围与警戒线,分析求解最佳放开二胎的时间。 4.3.2 模型的建立与求解 我们设定开放二胎的时间为 t,则在 t 时刻之前的时间我们使用 L 矩阵进 行迭代,在 t 时刻之后的时间我们使用 L矩阵进行迭代,得到不同时刻开放 二胎情况下的人口预测,结果如下所示: 0.149 0.185 0.221 0.249 0.274 0.287 0.149 0.189 0.225 0.254 0.282 0.296 0.149 0.189 0.228 0.257 0.286 0.303 0.149 0.189 0.228 0.259 0.288 0.306 0.149 0.189 0.228 0.259 0.289 0.307 2010 2020 2030 2040 2050 2060 2010实 施 2020实 施 2030实 施 2040实 施 2050实 施 图七:不同时间开始实施开放二胎得到的老龄化率趋势 由上图我们可以发现,随着开放二胎政策时间的推移,人口老龄化的程度 也就越明显。这与学术界公认的计划生育政策会加剧我国老龄化程度的看法一 致。 通过查询相关资料我们可以知道,国际公认的重度老龄化率警戒线为 0.3,超过该值将会严重威胁到国家发展。我们以以上预测数据为基准,将各年 份各情况下的老年化率与重度老龄化警戒线 0.3 作比较,发现若在 2020 年开始 实施放开二胎政策,到 2060 年我国老龄化率将会达到 0.296;若在 2020 年开 始实施放开二胎政策,到 2060 年我国老龄化率将会达到 0.303。故我们认为放 开二胎政策实施的时间应该控制在 2030 年之前。考虑到模型所具有的一定误差 和人口老龄化问题的紧迫性,我们认为最佳放开二胎政策实施的时间应该为 2010 年至 2020 年之间。通过第一题的解答我们也会发现开放二胎政策的紧迫 性与必要性。 五、 模型改进 在第一问的解答中我们只考虑了数据本身的特性,类似于在做数据挖掘, 没有考虑到有些数据,如死亡率,是随着时间的变化而变化的。若在 Leslie 模 型中将生育率与存活率动态考虑,将会做出更准确的结果。 在第二问的解答中我们难以建立合适模型来分析住宅与人口之间的联系, 但我们可以尝试着考虑进国家的宏观调控政策将其趋势合理预测出来,进而对 国家政策方向进行合理评估与建议。 六、 参考文献 01谢文娜, 刘美霞. 基于中国人口结构与人口素质的经济预测模型J. 中国 城市经济, 2011, 23: 058. 02李

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论