




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散课时规范练15导数与函数的小综合基础巩固组1.函数f(x)=(x-3)ex的单调递增区间是()A.(-,2)B.(0,3)C.(1,4)D.(2,+)2.(2017山东烟台一模,文9)已知函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a0,b0,c0,d0,b0,c0,d0C.a0,b0,d0D.a0,b0,c0,d03.已知函数f(x)=x3-3x2+x的极大值点为m,极小值点为n,则m+n=()A.0B.2C.-4D.-24.定义域为R的可导函数y=f(x)的导函数f(x),满足f(x)2ex的解集为()A.(-,0)B.(-,2)C.(0,+)D.(2,+)5.(2017辽宁大连一模,文8)函数f(x)=exx的图象大致为()6.(2017河南濮阳一模,文12)设f(x)是函数f(x)定义在(0,+)上的导函数,满足xf(x)+2f(x)=1x2,则下列不等式一定成立的是()A.f(e)e2f(e2)eB.f(2)9f(e)4D.f(e)e20时,xf(x)-f(x)0成立的x的取值范围是.11.(2017山东泰安一模,文14)已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g(x)为g(x)的导函数,对xR,总有g(x)2x,则g(x)x2+4的解集为.综合提升组12.(2017广西南宁一模)已知函数f(x)=-x2-6x-3,g(x)=2x3+3x2-12x+9,m0,且对x(0,+),2f(x)xf(x)3f(x)恒成立,其中f(x)为f(x)的导函数,则()A.116f(1)f(2)18B.18f(1)f(2)14C.14f(1)f(2)13D.13f(1)f(2)12导学号2419073314.(2017河北邯郸二模,文16)若函数f(x)=(x2-ax+a+1)ex(aN)在区间(1,3)内只有1个极值点,则曲线f(x)在点(0,f(0)处切线的方程为.创新应用组15.(2017安徽淮南一模,文12)如果定义在R上的函数f(x)满足:对于任意x1x2,都有x1f(x1)+x2f(x2)x1f(x2)+x2f(x1),则称f(x)为“H函数”.给出下列函数:y=-x3+x+1;y=3x-2(sin x-cos x);y=1-ex;f(x)=lnx(x1),0(x0,则a的取值范围是.答案:1.D函数f(x)=(x-3)ex的导数为f(x)=(x-3)ex=ex+(x-3)ex=(x-2)ex.由导数与函数单调性的关系,得当f(x)0时,函数f(x)单调递增,此时由不等式f(x)=(x-2)ex0,解得x2.2.C由题图可知f(0)=d0,排除选项A,B;f(x)=3ax2+2bx+c,且由题图知(-,x1),(x2,+)是函数的递减区间,可知a0,排除D.故选C.3.B因为函数f(x)=x3-3x2+x的极大值点为m,极小值点为n,所以m,n为f(x)=3x2-6x+1=0的两根.由根与系数的关系可知m+n=-(-6)3=2.4.C设g(x)=f(x)ex,则g(x)=f(x)-f(x)ex.f(x)0,即函数g(x)在定义域内单调递增.f(0)=2,g(0)=f(0)=2,不等式f(x)2ex等价于g(x)g(0).函数g(x)在定义域内单调递增,x0,不等式的解集为(0,+),故选C.5.B函数f(x)=exx的定义域为x0,xR,当x0时,函数f(x)=xex-exx2,可得函数的极值点为x=1,当x(0,1)时,函数是减函数,当x1时,函数是增函数,并且f(x)0,选项B,D满足题意.当x0时,函数f(x)=exx0,函数g(x)在(0,+)内单调递增.g(2)=4f(2)g(e)=e2f(e)g(3)=9f(3),f(2)9f(3)4.故选B.7.Bf(x)=x(ln x-ax),f(x)=ln x-2ax+1,由题意可知f(x)在(0,+)内有两个不同的零点,令f(x)=0,得2a=lnx+1x,设g(x)=lnx+1x,则g(x)=-lnxx2,g(x)在(0,1)内单调递增,在(1,+)内单调递减.当x0时,g(x)-,当x+时,g(x)0,而g(x)max=g(1)=1,只需02a1,即0a12.8.(0,1)(2,3)由题意知f(x)=-x+4-3x=-x2+4x-3x=-(x-1)(x-3)x.由f(x)=0得x1=1,x2=3,可知1,3是函数f(x)的两个极值点.则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间t,t+1上就不单调,由t1t+1或t3t+1,得0t1或2tcb方程f(x)=0无解,f(x)0或f(x)0恒成立,f(x)是单调函数;由题意得x(0,+),f(f(x)-log2 015x)=2 017,且f(x)是定义在(0,+)的单调函数,则f(x)-log2 015x是定值.设t=f(x)-log2 015x,则f(x)=t+log2 015x,f(x)是增函数.又0log43log31cb.故答案为acb.10.(-,-1)(0,1)当x0时,令F(x)=f(x)x,则F(x)=xf(x)-f(x)x20时,F(x)=f(x)x为减函数.f(x)为奇函数,且由f(-1)=0,得f(1)=0,故F(1)=0.在区间(0,1)内,F(x)0;在(1,+)内,F(x)0,即当0x0;当x1时,f(x)0;当x(-1,0)时,f(x)0的解集为(-,-1)(0,1).11.(-,-1)f(x)是定义在R上的奇函数,f(x)的图象过原点,g(x)=f(x+1)+5,g(x)的图象过点(-1,5).令h(x)=g(x)-x2-4,h(x)=g(x)-2x.对xR,总有g(x)2x,h(x)在R上是增函数,又h(-1)=g(-1)-1-4=0,g(x)x2+4的解集为(-,-1).12.Ag(x)=2x3+3x2-12x+9,g(x)=6x2+6x-12=6(x+2)(x-1),则当0x1时,g(x)1时,g(x)0,函数g(x)递增,当x0时,g(x)min=g(1)=2.f(x)=-x2-6x-3=-(x+3)2+66,作函数y=(x)的图象,如图所示,当f(x)=2时,方程两根分别为-5和-1,则m的最小值为-5,故选A.13.B令g(x)=f(x)x2,x(0,+),则g(x)=xf(x)-2f(x)x3.x(0,+),2f(x)xf(x)3f(x)恒成立,00,函数g(x)在(0,+)内单调递增,f(1)10,f(1)f(2)14.令h(x)=f(x)x3,x(0,+),则h(x)=xf(x)-3f(x)x4.x(0,+),2f(x)xf(x)3f(x)恒成立,h(x)=xf(x)-3f(x)x4f(2)8,又f(x)0,18f(1)f(2).综上可得18f(1)f(2)14,故选B.14.x-y+6=0f(x)=exx2+(2-a)x+1,若f(x)在(1,3)内只有1个极值点,f(1)f(3)0,即(a-4)(3a-16)0,解得4a0,y=3x-2(sin x-cos x)为增函数,则其是“H函数”;对于,y=1-ex=-ex+1,是减函数,则其不是“H函数”;对于,f(x)=lnx(x1),0(x1),当x0,即g(x0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业生态循环农业项目实施合同
- 除夕跳火群高分作文(15篇)
- 快递收发自动化软件合作协议
- 家装合同模板与常见条款解析
- 基于需求的报告制作指南
- 标准合同范本法律注意事项
- 2025年知识产权专业题库- 著作权法对数字文化产业的发展影响研究
- 2025年精算学专业题库- 人寿保险精算的核心技能
- 2025年金融学专业题库- 金融风险管理的理念与实践
- 2025年信用风险管理与法律防控专业题库- 信用风险管理与法律防控专业的就业指导
- 2024年中国食用变性淀粉市场调查研究报告
- You Raise Me Up二部合唱简谱
- 颅脑外伤患者的麻醉管理专家共识(2021版)
- 质量警示卡模板
- 工厂设备拆除施工方案
- DZ∕T 0219-2006 滑坡防治工程设计与施工技术规范(正式版)
- JJG 86-2011 标准玻璃浮计
- 模具师转正述职报告
- 仪表电气专业培训课件
- 路政巡查培训课件
- 《甲状腺危象》课件
评论
0/150
提交评论