资源目录
压缩包内文档预览:(预览前20页/共24页)
编号:20908648
类型:共享资源
大小:6.57MB
格式:RAR
上传时间:2019-07-15
上传人:QQ24****1780
认证信息
个人认证
王**(实名认证)
浙江
IP属地:浙江
25
积分
- 关 键 词:
-
自动控制原理
- 资源描述:
-
自动控制原理,自动控制原理
- 内容简介:
-
第二章 控制系统的数学模型 2.3 传递函数,教学重点: 控制系统传递函数的定义及性质。 教学难点: 元件或系统传递函数的建立。 教学内容: 1、传递函数的定义。 2、传递函数性质。 3、传递函数的零极点。 4、典型元部件的传递函数动态结构图 5、典型环节的传递函数,1、建立系统微分方程模型 实例: 1、电路系统 2、力学系统 2、液位控制 3、热力学系统 4、电枢控制直流伺 服电动机,2、非线性系统的线性化 泰勒级数展开法,上讲回顾,复习:数学工具拉普拉斯变换与反变换, 拉氏变换定义: 设函数f(t)满足 t0时,f(t)分段连续 则f(t)的拉氏变换存在,其表达式记作 拉氏变换基本定理 线性定理 位移定理 延迟定理 终值定理,数学工具拉普拉斯变换与反变换,初值定理 微分定理 积分定理 拉氏反变换 F(s)化成下列因式分解形式: a. F(s)中具有不同的极点时,可展开为,b.F(s)含有共扼复数极点时,可展开为,c.F(s)含有多重极点时,可展开为,其余各极点的留数确定方法与上同。,一、 传递函数,传递函数是在用拉氏变换求解线性常微分方程的过程中 引申出来的概念。 微分方程是在时域中描述系统动态性能的数学模型,在给 定外作用和初始条件下,解微分方程可以得到系统的输出响应 。但系统结构和参数变化时,对系统性能的分析比较麻烦。 用拉氏变化法求解微分方程时,可以得到控制系统在复数 域的数学模型传递函数。 定义:在零初始条件下,线性定常系统的传递函数, 定义为系统输出量c(t)的拉氏变换C(S)与输入 量r(t)的拉氏变换R(S)之比。,为什么引入传递函数?,定义中的条件是什么?,式中c(t)是系统输出量,r(t)是系统输入量,a、 b是与系统结构和参数有关的常系数。 设r(t)和c(t)及其各阶系数在t=0时的值均为零, 即零初始条件.则对上式中各项分别求拉氏变换, 并令R(s)Lc(t),R(s)=Lr(t),可得s的代数 方程为: 于是,由定义得系统传递函数为:,设线性定常系统由下述n阶线性常微分方程描述:,零初始条件的含义是什么?,例1 求传递函数 1) 2) 3) 4) 5) 6),如何求传递函数?,二、传递函数的性质,性质1 传递函数是复变量s的有理真分式函数,mn,且所具有复变量函数的所有性质。 性质2 G(s)取决于系统或元件的结构和参数,与输入量的形式(幅度与大小)无关。 性质3 G(s)虽然描述了输出与输入之间的关系, 但它不提供任何该系统的物理结构。因为许多不同的物理系统具有完全相同的传递函数。,传递函数是一种不完全描述!,有什么优点?,性质4 如果G(s)已知,那么可以研究系统在各种 输入信号作用下的输出响应。 性质5 如果系统的G(s)未知,可以给系统加上已知的输入,研究其输出,从而得出传递函数. (传递函数数学模型, 是(表示)输出变量和 输入变量微分方程的运算模型) 性质6 传递函数与微分方程之间有关系。,如果将,置换,怎样求输出响应?,性质7 传递函数G(s)的拉氏反变换是系统的 脉冲响应k(t)。 (脉冲过渡函数) 脉冲响应:系统在单位脉冲输入时的,输出响应k(t) 。,因为: 即 例2. 在例3)中,设当 输入 为单位阶跃函数,即 时,求输出 解: 根据例中得到的微分方程。,三、传递函数的极点和零点对输出的影响,为传递函数的零点。 为传递函数的极点。 极点是微分方程的特征根,因此,决定 了所描述系统自由运动的性质(模态)。,如何求系统的零点,极点?,系统的零点,极点对系统的性能有何影响?,零点离极点的距离越远,该极点所产生的模态所占比重越大 零点距极点的距离越近,该极点所产生的模态所占比重越小 如果零极点重合该极点所产生的模态为零,因为分子分母相互抵消。,四、典型元部件的传递函数 1、电位器 将线位移或角位移变换为电压量的装置。 1)单个电位器用作为信号变换装置。,掌握传递函数的求法!,单位角位移,输出电压(v/rad) E-电位器电源(v) 电位器最大工作角(rad),2)一对电位器可组成误差检测器,K1是单个电位器的传递系数。,是两个电位器电刷角位移之差,称误差角。,电位器的负载效应,一般要求,五、典型环节及其传递函数 任何一个复杂系统都是由有限个典型环节组合而成的。,典型环节通常分为以下六种: 1、比例环节 式中 K-增益 特点: 输入输出量成比例,无失真和时间延迟。 实例:电子放大器,齿轮,电阻(电位器),感应式变送器等。,2、惯性环节 式中 T-时间常数 特点: 含一个储能元件,对突变的输入其输出不能立即复现,输出无振荡。 实例:RC网络,直流伺服电动机的传递函数也包含这一环节。 3 微分环节 理想微分: 一阶微分 二阶微分 特点: 输出量正比输入量变化的速度,能预示输入信号的 变化趋势。 实例: 测速发电机输出电压与输入角度间的传递函数即为 微分环节。,4、积分环节,特点: 输出量与输入量的积分成正比例,当输入消失,输出具有记忆功能。 实例: 电动机角度与角速度间的传递函数,模拟计算机中的积分器等。 5、振荡环节 式中 阻尼比 -自然振荡角频率(无阻尼振荡角频率) 特点:环节中有两个独立的储能元件,并可进行能 量交换,其输出出现振荡。 实例:RLC电路的输出与输入电压间的传递函数。,6、纯时间延时环节,式中 延迟时间 特点: 输出量能准确复现输入量,但须延迟一 固定的时间间隔。 实例:管道压力、流量等物理量的控制,其数 学模型就包含有延迟环节。,3、测速发电机 测量角速度并将它转换成电压量的装置,转子角速度(rad/s),输出斜率(v/rad/s),直流测速发电机 交流测速发电机,例3、电枢控制直流伺服电动机 已知求得电枢控制直流电动机简化后的微分方程为,可视为负载扰动转矩,根据线
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。