




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.1 两角差的余弦公式,一.导入新课,(一)我们来看这样一个生活中的例子:,进入引例,【问题1】:可求 , 。,【问题2】:需求角 ,可先求其三角函数值, 如:,【反例】:显然上式不成立,比如说:,【问题3】:又例如:要求 的值,我们怎么办?。,可变换为 ?,试问: 成立吗?,我们应该试着去探索得到正确的结果!,二. 探究新知,可以借助向量的数量积公式。 可以简洁地推导出正确的公式:,如图,在直角坐标系中作单位圆 ,以 为始边作角 ,它们的终边分别 交单位圆于点 。,( , 点坐标为 , ),1.为了求得实例中的旋转角度 的余弦值,我们联系已学过的关于求夹角 角度的相关知识,同学们联想到什么知识呢?,(以上推导是否有不严谨之处?应如何补充?),由向量数量积的概念,角 ;,由于 都是任意角,所以 也是任意角,,但是由诱导公式,总有一个角 ,使,若 , 为 的夹角,,若 ,,则 为 的夹角,,三. 发现结论:,对于任意角 ,都有 可以简记为,四.知识应用:,例1: (1) 求 (公式正用),(2) 求 (公式逆用),(3)化简 ;,(一)我们来看这样一个生活中的例子:,进入引例,【问题1】:可求 , 。,求,四. 知识应用:,例2. 已知 , , , 是第三象限角, 求 的值 。 (公式正用),【变式1】已知 是锐角, ,求 的值。 (公式变用),【变式2】已知 ,求 的值。,【变式3】已知 , ,求 的值。,课时小结:,1、运用两角差的余弦公式解决问题时要做好角的文章,包括角的范围的确定,角的分解或合并等问题; 2、化简问题(一般指公式的逆用),根据被化简式子的结构,选择三角公式进行化简。,作业:,1.书面作业: 练习 2,4 2.课外探究作业:预习 3.1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理问题家长协议书
- 房产继承面积协议书
- 招商租赁意向协议书
- 放弃项目投资协议书
- 房子转让租期协议书
- 房子远程继承协议书
- 房产转让保姆协议书
- 帽子版权转让协议书
- 房屋居住收益协议书
- 技能转让服务协议书
- “五育”与小学数学教育的融合
- 21 《杨氏之子》课件
- 阿替普酶在心脑血管疾病中的应用
- ISO27001:2022信息安全管理手册+全套程序文件+表单
- 《电力建设施工企业安全生产标准化实施规范》
- MOOC 数字电子技术基础-华中科技大学 中国大学慕课答案
- 2024世界互联网大会跨境电商实践案例集
- 产后肺栓塞护理查房
- 屋面防水修缮工程技术标样本
- 黔灵山景区介绍
- 2024年国网信息专业三种人考试复习题库(附答案)
评论
0/150
提交评论