外文原文.pdf

双柱机械式汽车举升机设计【优秀举升机械装置设计+6张CAD图纸】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图
编号:369463    类型:共享资源    大小:1.71MB    格式:RAR    上传时间:2014-12-05 上传人:QQ14****9609 IP属地:陕西
45
积分
关 键 词:
机械设计 汽车设计 举升机 双柱机械式汽车举升机设计 举升机械装置设计
资源描述:

汽车举升机的设计

机械式汽车举升机的设计

双柱机械式汽车举升机设计【优秀举升机械装置设计+6张CAD图纸】

【任务书+开题报告+文献综述+外文翻译+专题报告+54页@正文16000字】【详情如下】【需要咨询购买全套设计请加QQ1459919609 】.bat

专题报告.doc

丝杠1零件图(A2).dwg

丝杠2零件图(A2).dwg

任务书.doc

升举机支撑装置(A0).dwg

双柱机械式汽车举升机的设计正文.doc

外文原文.pdf

外文译文.doc

开题报告.doc

总装图(A0).dwg

文献综述.doc

皮带轮(A2).dwg

英文翻译.doc

链轮(A3).dwg

毕业设计(论文)任务书

一、设计(论文)题目:双柱机械式汽车举升机

二、设计的目的和意义:现代汽车工业随着科学技术的飞速发展而日新月异, 新工艺、新材料、新技术广泛运用, 特别是电子技术、液压技术在汽车上应用, 使当今的汽车是集各种先进技术的大成, 新颖别致的汽车时时翻新。而现代汽车的故障诊断不再是眼看、耳听、手摸, 汽车维修也不再是师傅带徒弟的一门手艺, 而是利用各种新技术的过程。随着汽车技术的快速发展, 日益呈现出汽车维修的高科技特征, 与其同时汽车维修理念也不断更新。为此,为了提高其维修的快速发展,有必要设计一套新型的汽车举升机。

三、设计(论文)主要内容:双柱机械式汽车举升机,它包括两个框形举升柱,两个垂直滑动在该框形举升柱上的升降滑架,两个托臂和两个轨道式托板,其特征在于所述框形举升柱是由结构在下部的底板升底梁升矩形齿轮箱及矩齿轮箱两侧短边向上延伸的方形导柱连接上部的横梁构成的整体;所述框形举升柱下面的矩形齿轮箱其中一个是安装电动机的驱动箱;而所述升降滑架是由两个平行固定在其上的托臂穿过所述轨道式托板上滑套的孔位相互连接。其中包括两张A0图纸,三张A1图纸和一张A2图纸,总和三张多A0图纸,毕业设计论文1.5万字左右。

四、设计目标:满足现代的汽车维修需要,尽可能的节省时间,提高汽车维修的效率。

五、进度计划: 2008年3月13日至3月31日进行为期3周的生产实习;4月1日至4月10日完成对设计题目的资料收集与查询;4月11日至6月10日完成对设计图纸的绘制;5月11日至6月10日完成毕业设计说明书的编写;6月11日至6月25日最后的审稿及说明书和图纸的打印。                                                                      

六、参考文献资料:

[1]《机床设计手册》编写组.《机床设计手册》第1册.机械工业出版社,1986年

[2] 《机床设计手册》编写组.《机床设计手册》第2册.机械工业出版社,1986年

[3] 《机床设计手册》编写组.《机床设计手册》第3册.机械工业出版社,1986年

[4]《机床设计手册》编写组.《机床设计手册》第4册.机械工业出版社,1986年

[5]《机床设计手册》编写组.《机床设计手册》第5册.机械工业出版社,1986年

[6]  朱龙根、黄雨华.机械系统设计.机械工业出版社,1980年

[7]   《机械设计手册》编写组.《机械设计手册》第1册.机械工业出版社,1988年

[8]   《机械设计手册》编写组.《机械设计手册》第2册.机械工业出版社,1988年

[9]   《机械设计手册》编写组.《机械设计手册》第3册.机械工业出版社,1988年

[10]   《机械设计手册》编写组.《机械设计手册》第4册.机械工业出版社,1988年

[11]   《机械设计手册》编写组.《机械设计手册》第5册.机械工业出版社,1988年

[12]    黄祖尧、肖正义.精密丝杆副的选用计算.《机床》1989年第6期                                

[13]    上海金属切削技术协会.《金属切削手册》第2册.兵器工业出版社,1986年

摘要

双柱机械式汽车举升机,它包括两个框形举升柱,两个垂直滑动在该框形举升柱上的升降滑架,两个托臂和两个轨道式托板,其特征在于所述框形举升柱是由结构在下部的底板升底梁升矩形齿轮箱及矩齿轮箱两侧短边向上延伸的方形导柱连接上部的横梁构成的整体;所述框形举升柱下面的矩形齿轮箱其中一个是安装电动机的驱动箱;而所述升降滑架是由两个平行固定在其上的托臂穿过所述轨道式托板上滑套的孔位相互连接。

关键词  滑动螺旋副 导轨 丝杠 制动器 组合开关

Abstract

Shuangzhu mechanical vehicle lift, which includes two box-shaped Jusheng pillar, two vertical sliding in the box-shaped piece of Jusheng-piece aircraft, two up and two track-holding arm, their identity is in Jusheng pillar box-shaped structure in part by the end of Liang-bed or carpenter's square or rectangle gear boxes and gear boxes on both sides of a square-short margin upward extension of the upper beam connecting a pillar overall; Jusheng pillar box is described below rectangle gear boxes installed electric motors is one of the driving boxes; and the piece-by-two parallel fixed in its orbit above the occasional arm-supporting, through the Hua Tao Kong spaces interlinked.

Key words    Glide the spiral pair and lead the track, silk to carry on the shoulder, make to move the machine and combine the switch

目         录

摘要1

Abstract2

第一章 绪论5

1.前言5

2.举升机概述6

第二章 升举装置的总体设计7

1.设计题目7

2.设计方案7

3.方案选择7

4.实习考察7

5.确定总设计计划7

6.方案的实施8

第三章 机械传动系统9

1.方案的拟定9

2.在拟定机械传动系统方案时,应考虑以下原则10

3.传动类型选择的依据10

4.滑动螺旋传动的特点及计算14

第四章 滚动直线导轨套副19

1.导轨的类型及其特点20

2.导轨的设计要求20

3.导轨的设计程序及内容20

4.精密导轨的设计原则20

5.导轨类型的选择原则21

第五章 丝杠同步转动的链传动24

1.滚子传动的设计25

2.滚子链传动的设计计算25

3.滚子链的静强度计算29

4.滚子链的使用寿命计算30

5.滚子链链轮33

6.滚子链链轮的基本参数和主要尺寸34

第六章 带传动及其有关计算35

1.带传动35

2.带和带传动的形式35

3.  V带传动35

5.基准宽度制带传动的设计计算36

6.  带传动的效率40

7.  V带带轮41

8.带轮的结构41

9.带轮的技术要求41

10.带轮的技术要求42

11.V带传动的主要失效形式43

第二部分 机电控制系统44

第一章 制动器的选择及其计算44

1制动器44

2 制动器的分类、特点及应用44

3.制动器的选择44

4.制动器的性能参数及主要尺寸45

第二章  开关的选择46

1.HZ5B-1型组合开关47

2.LXJ6系列接近开关47

第三部分 使用及其效益47

1.使用时注意事项48

2.升举机安全操作规程48

第二章 经济效益分析48

结论49

谢 辞51            

第一章 绪论

1.前言

现代汽车工业随着科学技术的飞速发展而日新月异, 新工艺、新材料、新技术广泛运用, 特别是电子技术、液压技术在汽车上应用, 使当今的汽车是集各种先进技术的大成, 新颖别致的汽车时时翻新。而现代汽车的故障诊断不再是眼看、耳听、手摸, 汽车维修也不再是师傅带徒弟的一门手艺, 而是利用各种新技术的过程。随着汽车技术的快速发展, 日益呈现出汽车维修的高科技特征, 与其同时汽车维修理念也不断更新。

随着汽车技术的发展, 维修设备也随之产生了质的变化。汽车保修设备的生产, 也不再是多以机具类为主。20世纪90年代以来, 一批批先进的进口汽车检测设备和仪器涌入国门。四轮定位仪、解码器、汽车专用示波器、汽车专用电表、发动机分析仪、尾气测试仪及电脑动平衡机等,这些昔日人们十分陌生的检测设备, 已经成为现代维修企业的必备工具。而这些检测设备, 本身就是高科技化的产品, 是电子检测技术、电脑技术的高级集成物。要熟练地操作使用这些检测设备, 技术人员需要经过严格的培训, 并要掌握外语和电脑技术, 才能掌握正确的使用方法, 充分发挥检测设备的各项功能。这种高科技化的现代汽车检测设备, 使现代汽车维修的科技含量大为提高。

加入WTO对中国汽车维修业的影响是巨大的。为了适应售后服务的要求, 国外汽车维修业将相继进入中国市场, 国外汽车维修业的介入给中国汽车维修市场提供了一个较为先进的高效的国际技术环境, 对促进国内汽车维修业的更新改造、加速汽车维修业技术进步的进程, 将起到良好的推动作用。

传统的汽车维修方式、维修制度以及经营模式必然被现代汽车维修方式所代替。以往的汽车维修往往就维修谈维修, 现代汽车维修是汽车销售、零件销售、资讯及售后服务四位一体紧密结合。汽车维修的新趋势是维修对象的高科技化、维修设备现代化、维修咨询网络化、维修诊断专家化、维修管理电脑化及服务对象的社会化。国外汽车维修企业以汽车服务贸易的形式进入国内市场, 使我国汽车维修行业将面临严峻形势, 而在汽车维修企业发展要素中, 起主导作用的因素将是: 管理、技术、装配和信息。倡导汽车维修行业的服务优质化、品牌化、现代化, 势在必行。

参考文献:

[1] 《机床设计手册》编写组.《机床设计手册》第1册.机械工业出版社,1986年

[2] 《机床设计手册》编写组.《机床设计手册》第2册.机械工业出版社,1986年

[3] 《机床设计手册》编写组.《机床设计手册》第3册.机械工业出版社,1986年

[4]《机床设计手册》编写组.《机床设计手册》第4册.机械工业出版社,1986年

[5]《机床设计手册》编写组.《机床设计手册》第5册.机械工业出版社,1986年

[6]  朱龙根、黄雨华.机械系统设计.机械工业出版社,1980年

[7]   《机械设计手册》编写组.《机械设计手册》第1册.机械工业出版社,1988年

[8]   《机械设计手册》编写组.《机械设计手册》第2册.机械工业出版社,1988年

[9]   《机械设计手册》编写组.《机械设计手册》第3册.机械工业出版社,1988年

[10]   《机械设计手册》编写组.《机械设计手册》第4册.机械工业出版社,1988年

[11]   《机械设计手册》编写组.《机械设计手册》第5册.机械工业出版社,1988年

[12]    黄祖尧、肖正义.精密丝杆副的选用计算.《机床》1989年第6期                                

[13]    上海金属切削技术协会.《金属切削手册》第2册.兵器工业出版社,1986年


内容简介:
Short communicationDevelopment of a symmetrical spiral inlet to improvecyclone separator performanceBingtao Zhao*, Henggen Shen, Yanming KangDepartment of Environmental Engineering, Donghua University, No. 1882, Yanan Rd., Shanghai, Shanghai 200051, ChinaReceived 28 October 2003; received in revised form 24 February 2004; accepted 3 June 2004Available online 17 July 2004AbstractThree cyclone separators with different inlet geometry were designed, which include a conventional tangential single inlet (CTSI), adirect symmetrical spiral inlet (DSSI), and a converging symmetrical spiral inlet (CSSI). The effects of inlet type on cycloneperformance characteristics, including the collection efficiency and pressure drop, were investigated and compared as a function ofparticle size and flow rate in this paper. Experimental result indicated that the symmetrical spiral inlet (SSI), especially CSSI inletgeometry, has effect on significantly increasing collection efficiency with insignificantly increasing pressure drop. In addition, theresults of collection efficiency and pressure drop comparison between the experimental data and the theoretical model were alsoinvolved.Keywords: Cyclone; Symmetrical spiral inlet; Collection efficiency; Pressure drop1. IntroductionCyclone separators are widely used in the field of airpollution control and gassolid separation for aerosolsampling and industrial applications 1. Due to relativesimplicity to fabricate, low cost to operate, and well adapt-ability to extremely harsh conditions, cyclone separatorshave became one of most important particle removal devicethat preferably is utilized in both engineering and processoperation. However, the increasing emphasis on environ-ment protection and gassolid separation is indicating thatfiner and finer particles must be removed. To meet thischallenge, the improvement of cyclone geometry and per-formance is required rather than having to resort to alterna-tive units. Many researchers have contributed to largevolume of work on improving the cyclone performance,by introducing new inlet design and operation variables.These include studies of testing a cyclonic fractionator forsampling that used multiple inlet vanes by Wedding et al.2, developing a mathematic model to predict the collectionefficiency of small cylindrical multiport cyclone by DeOtte3, testing a multiple inlet cyclones based on Lapple typegeometry by Moore and Mcfarland 4, designing andtesting a respirable multiinlet cyclone sampler that minimizethe orientation bias by Gautam and Streenath 5, andcomparing the performance of a double inlet cyclone withclean air by Lim et al. 6. In this paper, the new inlet type,which is different type of inlet from that used by formerresearchers, was developed, and the experimental study onaddressing the effect of inlet type on cyclone performanceswas presented.2. ExperimentalThree kinds of cyclone separators with various inletgeometries, including conventional tangential single inlet(CTSI), direct symmetrical spiral inlet (DSSI), and converg-ing symmetrical spiral inlet (CSSI), were manufactured andstudied. The geometries and dimensions these cyclones arepresented in Fig. 1 and Table 1. To examine the effects ofinlet type, all other dimensions were designed to remain thesame but only the inlet geometry.* Corresponding author. Tel.: +86-21-62373718; fax: +86-21-62373482.E-mail address: (B. Zhao).Powder Technology 145 (2004) 4750The experimental system setup is shown in Fig. 2.The pressure drops were measured between two pressuretaps on the cyclone inlet and outlet tube by use of a digitalmicromanometer (SINAP, DP1000-IIIC). The collectionefficiency was calculated by the particle size distribution,by use of microparticle size analyzer (SPSI, LKY-2). Due tohaving the same symmetrical inlet in Model B or C, the flowrate of each inlet of multiple cyclone was equal to anotherand controlled by valve; two nozzle-type screw feeders wereused in same operating conditions to disperse the particleswith a concentration of 5.0 g/m3in inlet tube. The solidparticles used were talcum powder obeyed by log-normalsize distribution with skeletal density of 2700 kg/m3, massmean diameter of 5.97 Am, and geometric deviation of 2.08.The mean atmospheric pressure, ambient temperature, andrelative humidity during the tests were 99.93 kPa, 293 K,and less than 75%, respectively.3. Results and discussion3.1. Collection efficiencyFig. 3 shows the measured overall efficiencies of thecyclones as a function of flow rates or inlet velocities. It isusually expected that collection efficiency increase with theentrance velocity. However, the overall efficiency of thecyclone with symmetrical spiral inlet both Models B and Cwas always higher than the efficiency of the cyclone withconventional single inlet Model A at the same velocity; andespecially, the cyclone with CSSI, Model C has a highestoverall efficiency. These effects of improved inlet geometrycontribute to the increase in overall efficiency of the cycloneby 0.151.15% and 0.402.40% in the tested velocityrange.Fig. 4(a)(d) compares the grade collection efficiency ofthe cyclones with various inlet types at the flow rate of388.34, 519.80, 653.67, and 772.62 m3/h, with the inletvelocities of11.99, 16.04,20.18, and23.85m/s,respectively.As expected, the frictional efficiencies of all the cyclonesare seen to increase with increase in particle size. Theshapes of the grade collection efficiency curves of allmodels have a so-called S shape. The friction efficienciesof the DSSI (Model B) and CSSI cyclones (Model C) aregreater by 210% and 520% than that for the CTSIcyclone (Model A), respectively. This indicates that theinlet type or geometry to the cyclone plays an importantrole in the collection efficiency. It was expected thatparticles introduced to the cyclone with symmetrical spiralinlet (Models B and C) would easily be collected on thecyclone wall because they only have to move a shortdistance, and especially, the CSSI (Model C) changes theparticle concentration distribution and makes the particlepreseparated from the gas before entering the main body ofcyclone.Fig. 5 compares the experimental data at a flow rate of653.67 m3/h (inlet velocity of 20.18 m/s) with existingclassical theories 711. Apparently, the efficiency curvesbased on Mothes and Loffler model and Iozia and Leithsmethod match the experimental curves much closer thanother theories do. This result corresponds with the studycarried out by Dirgo and Leith 12 and Xiang et al. 13.Fig. 1. Schematic diagram of cyclones geometries: (a) conventionaltangential single inlet, Model A; (b) direct symmetrical spiral inlet, ModelB; (c) converging symmetrical spiral inlet, Model C.Table 1Dimensions of cyclones studied (unit: mm)DDehHBSab3001504501200112515015060Fig. 2. Schematic diagram of experimental system setup.Fig. 3. Overall efficiency of the cyclones at different inlet velocities.B. Zhao et al. / Powder Technology 145 (2004) 475048The comparison show that some model can predict atheoretical result that closed the experimental data, but thechanges of flow pattern and particle concentration distribu-tion induced by symmetrical spiral inlet having effects oncyclone performance were not taken into account adequatelyin developed theories.To examine the effects of the symmetrical spiral inlet oncyclone performance more clearly, Fig. 6 was prepared,depicting the 50% cut size for all models with varying theflow rate or inlet velocity. The 50% cut size of Models Cand B are lower than that of Model A at the same inletvelocity. As the inlet velocity is decreased, the 50% cut sizeis approximately decreased linearly. With inlet velocity20.18 m/s, for example, the decrease rate of 50% cut sizeis up to 9.88% for Model B and 24.62% for Model C. Thisindicated that the new inlet type can help to enhance thecyclone collection efficiency.3.2. Pressure dropThe pressure drop across cyclone is commonly expressedas a number gas inlet velocity heads DH named the pressureFig. 4. Grade efficiency of the cyclones at different inlet velocities. (a) Inlet velocity=11.99 m/s. (b) Inlet velocity=16.04 m/s. (c) Inlet velocity=20.18 m/s.(d) Inlet velocity=23.85 m/s.Fig. 5. Comparison of experimental grade efficiency with theories.Fig. 6. The 50% cut size of the cyclones.B. Zhao et al. / Powder Technology 145 (2004) 475049drop coefficient, which is the division of the pressure dropby inlet kinetic pressure qgmi2/2. The pressure drop coeffi-cient values for the three cyclones corresponding to differentinlet velocity are presented in Table 2.Obviously, higher pressure drop is associated with higherflow rate for a given cyclone. However, specifying a flowrate or inlet velocity, the difference of pressure drop coef-ficient between Models B, C, and A is less significant, andvaried between 5.21 and 5.76, with an average value 5.63,for Model B, 5.225.76, with an average value 5.67, forModel C, and 5.165.70, with an average value 5.55, forModel A, calculated by regression analysis. This is animportant point because it is possible to increase the cyclonecollection efficiency without increasing the pressure dropsignificantly.The experimental data of pressure drop were alsocompared with current theories 1420, and results arepresented in Table 3. The results show that the model ofAlexander and Barth provided the better fit to theexperimental data, although for some cyclones the modelsof Shepherd and Lapple and Dirgo predicted equallywell.4. ConclusionsA new kind of cyclone with symmetrical spiral inlet(SSI) including DSSI and CSSI was developed, and theeffects of these inlet types on cyclone performance weretested and compared. Experimental results show the overallefficiency the DSSI cyclone and CSSI is greater by 0.151.15% and 0.402.40% than that for CTSI cyclone, and thegrade efficiency is greater by 210% and 520%. Inaddition, the pressure drop coefficient is 5.63 for DSSIcyclone, 5.67 for CSSI, and 5.55 for CTSI cyclone. Despitethat the multiple inlet increases the complicity and the costof the cyclone separators, the cyclones with SSI, especiallyCSSI, can yield a better collection efficiency, obviously witha minor increase in pressure drop. This presents the possi-bility of obtaining a better performance cyclone by means ofimproving its inlet geometry design.References1 Y.F. Zhu, K.W. Lee, Experimental study on small cyclones operatingat high flowrates, Aerosol Sci. Technol. 30 (10) (1999) 13031315.2 J.B. Wedding, M.A. Weigand, T.A. Carney, A 10 Am cutpoint inlet forthe dichotomous sampler, Environ. Sci. Technol. 16 (1982) 602606.3 R.E. DeOtte, A model for the prediction of the collection efficiencycharacteristics of a small, cylindrical aerosol sampling cyclone, Aero-sol Sci. Technol. 12 (1990) 10551066.4 M.E. Moore, A.R. Mcfarland, Design methodology for multiple inletcyclones, Environ. Sci. Technol. 30 (1996) 271276.5 M. Gautam, A. Streenath, Performance of a respirable multi-inletcyclone sampler, J. Aerosol Sci. 28 (7) (1997) 12651281.6 K.S. Lim, S.B. Kwon, K.W. Lee, Characteristics of the collectionefficiency for a double inlet cyclone with clean air, J. Aerosol Sci.34 (2003) 10851095.7 D. Leith, W. Licht, The collection efficiency of cyclone type particlecollectors: a new theoretical approach, AIChE Symp. Ser. 68 (126)(1972) 196206.8 P.W. Dietz, Collection efficiency of cyclone separators, AIChE J. 27(6) (1981) 888892.9 H. Mothes, F. Loffler, Prediction of particle removal in cyclone sepa-rators, Int. Chem. Eng. 28 (2) (1988) 231240.10 D.L. Iozia, D. Leith, The logistic function and cyclone fractionalefficiency, Aerosol Sci. Technol. 12 (1990) 598606.11 R. Clift, M. Ghadiri, A.C. Hoffman, A critique of two models forcyclone performance, AI ChE J. 37 (1991) 285289.12 J. Dirgo, D. Leith, Cyclone collection efficiency: comparison of ex-perimental results with theoretical predictions, Aerosol Sci. Technol. 4(1985) 401415.13
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:双柱机械式汽车举升机设计【优秀举升机械装置设计+6张CAD图纸】
链接地址:https://www.renrendoc.com/p-369463.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!