湖北省荆州市沙市第五中学高中数学 3.1.1直线的倾斜角与斜率学案 新人教版必修2.doc_第1页
湖北省荆州市沙市第五中学高中数学 3.1.1直线的倾斜角与斜率学案 新人教版必修2.doc_第2页
湖北省荆州市沙市第五中学高中数学 3.1.1直线的倾斜角与斜率学案 新人教版必修2.doc_第3页
湖北省荆州市沙市第五中学高中数学 3.1.1直线的倾斜角与斜率学案 新人教版必修2.doc_第4页
湖北省荆州市沙市第五中学高中数学 3.1.1直线的倾斜角与斜率学案 新人教版必修2.doc_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

_3.1直线的倾斜角与斜率31.1倾斜角与斜率 提出问题在平面直角坐标系中,直线l经过点p.问题1:直线l的位置能够确定吗?提示:不能问题2:过点p可以作与l相交的直线多少条?提示:无数条问题3:上述问题中的所有直线有什么区别?提示:倾斜程度不同导入新知1.倾斜角的定义:当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角如图所示,直线l的倾斜角是apx,直线l的倾斜角是bpx.2倾斜角的范围:直线的倾斜角的取值范围是0180,并规定与x轴平行或重合的直线的倾斜角为0.3倾斜角与直线形状的关系倾斜角00909090180直线化解疑难对直线的倾斜角的理解(1)倾斜角定义中含有三个条件:x轴正向;直线向上的方向;小于180的非负角(2)从运动变化的观点来看,直线的倾斜角是由x轴按逆时针方向旋转到与直线重合时所成的角(3)倾斜角是一个几何概念,它直观地描述且表现了直线对x轴的倾斜程度(4)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等. 提出问题日常生活中,常用坡度(坡度)表示倾斜程度,例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度.问题1:对于直线可利用倾斜角描述倾斜程度,可否借助于坡度来描述直线的倾斜程度?提示:可以问题2:由上图中坡度为升高量与水平前进量的比值,那么对于平面直角坐标系中直线的倾斜程度能否如此度量?提示:可以问题3:通过坐标比,你会发现它与倾斜角有何关系?提示:与倾斜角的正切值相等导入新知1斜率的定义:一条直线的倾斜角的正切值叫做这条直线的斜率常用小写字母k表示,即ktan_.2斜率公式:经过两点p1(x1,y1),p2(x2,y2)(x1x2)的直线的斜率公式为k.当x1x2时,直线p1p2没有斜率3斜率作用:用实数反映了平面直角坐标系内的直线的倾斜程度化解疑难1倾斜角与斜率k的关系(1)直线都有倾斜角,但并不是所有的直线都有斜率当倾斜角是90时,直线的斜率不存在,此时,直线垂直于x轴(平行于y轴或与y轴重合)(2)直线的斜率也反映了直线相对于x轴的正方向的倾斜程度当090时,斜率越大,直线的倾斜程度越大;当90180时,斜率越大,直线的倾斜程度也越大2斜率公式(1)直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换,就是说, 如果分子是y2y1,分母必须是x2x1;反过来,如果分子是y1y2,分母必须是x1x2,即k.(2)用斜率公式时要一看,二用,三求值一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步;二用,就是将点的坐标代入斜率公式;三求值,就是计算斜率的值,尤其是点的坐标中含有参数时,应用斜率公式时要对参数进行讨论 例1(1)若直线l的向上方向与y轴的正方向成30角,则直线l的倾斜角为()a30b60c30或150 d60或120(2)下列说法中,正确的是()a直线的倾斜角为,则此直线的斜率为tan b直线的斜率为tan ,则此直线的倾斜角为c若直线的倾斜角为,则sin 0d任意直线都有倾斜角,且90时,斜率为tan 解析(1)如图,直线l有两种情况,故l的倾斜角为60或120.(2)对于a,当90时,直线的斜率不存在,故不正确;对于b,虽然直线的斜率为tan ,但只有0180时,才是此直线的倾斜角,故不正确;对于c,当直线平行于x轴时,0,sin 0,故c不正确,故选d.答案(1)d(2)d类题通法求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角(2)两点注意:当直线与x轴平行或重合时,倾斜角为0,当直线与x轴垂直时,倾斜角为90.注意直线倾斜角的取值范围是0180.活学活用1直线l经过第二、四象限,则直线l的倾斜角范围是()a0,90)b90,180)c(90,180) d(0,180)解析:选c直线倾斜角的取值范围是0,180),又直线l经过第二、四象限,所以直线l的倾斜角范围是(90,180)2设直线l过原点,其倾斜角为,将直线l绕坐标原点沿逆时针方向旋转45,得到直线l1,则直线l1的倾斜角为()a45b135c135d当0135时为45,当135180时为135解析:选d当0135时,l1的倾斜角是45.当135180时,结合图形和倾斜角的概念,即可得到l1的倾斜角为135,故应选d. 例2(1)已知过两点a(4,y),b(2,3)的直线的倾斜角为135,则y_;(2)过点p(2,m),q(m,4)的直线的斜率为1,则m的值为_;(3)已知过a(3,1),b(m,2)的直线的斜率为1,则m的值为_解析(1)直线ab的斜率ktan 1351,又k,由1,得y5.(2)由斜率公式k1,得m1.(3)当m3时,直线ab平行于y轴,斜率不存在当m3时,k1,解得m0.答案(1)5(2)1(3)0类题通法利用斜率公式求直线的斜率应注意的事项(1)运用公式的前提条件是“x1x2”,即直线不与x轴垂直,因为当直线与x轴垂直时,斜率是不存在的;(2)斜率公式与两点p1,p2的先后顺序无关,也就是说公式中的x1与x2,y1与y2可以同时交换位置活学活用3(2012河南平顶山高一调研)若直线过点 (1,2),(4,2),则此直线的倾斜角是()a30 b45c60 d90解析:选a设直线的倾斜角为,直线斜率k,tan .又0180,30. 例3已知实数x,y满足y2x8,且2x3,求的最大值和最小值解如图所示,由于点(x,y)满足关系式2xy8,且2x3,可知点p(x,y)在线段ab上移动,并且a,b两点的坐标可分别求得为a(2,4),b(3,2)由于的几何意义是直线op的斜率,且koa2,kob,所以可求得的最大值为2,最小值为.类题通法根据题目中代数式的特征,看是否可以写成的形式,若能,则联想其几何意义(即直线的斜率),再利用图形的直观性来分析解决问题活学活用4点m(x,y)在函数y2x8的图象上,当x2,5时,求的取值范围解:的几何意义是过m(x,y),n(1,1)两点的直线的斜率点m在函数y2x8的图象上,且x2,5,设该线段为ab且a(2,4),b(5,2)kna,knb,.的取值范围为, 典例已知两点a(3,4),b(3,2),过点p(1,0)的直线l与线段ab有公共点,则l的倾斜角的取值范围_;直线l的斜率k的取值范围_解析如图,由题意可知kpa1,kpb1,则直线l的倾斜角介于直线pb与pa的倾斜角之间,又pb的倾斜角是45,pa的倾斜角是135,直线l的倾斜角的取值范围是45135;要使l与线段ab有公共点,则直线l的斜率k的取值范围是k1或k1.答案45135k1或k1易错防范1本题易错误地认为1k1,结合图形考虑,l的倾斜角应介于直线pb与直线pa的倾斜角之间,要特别注意,当l的倾斜角小于90时,有kkpb;当l的倾斜角大于90时,则有kkpa.2.如图,过点p的直线l与直线段ab相交时,因为过点p且与x轴垂直的直线pc的斜率不存在,而pc所在的直线与线段ab不相交,所以满足题意的斜率夹在中间,即kpakkpb.解决这类问题时,可利用数形结合思想直观地判断直线是夹在中间还是在两边成功破障已知直线l过点p(3,4),且与以a(1,0),b(2,1)为端点的线段ab有公共点,求直线l的斜率k的取值范围解:直线pa的斜率kpa1,直线pb的斜率kpb3,要使直线l与线段ab有公共点,k的取值范围为1,3随堂即时演练1关于直线的倾斜角和斜率,下列说法正确的是()a任一直线都有倾斜角,都存在斜率b倾斜角为135的直线的斜率为1c若一条直线的倾斜角为,则它的斜率为ktan d直线斜率的取值范围是(,)解析:选d任一直线都有倾斜角,但当倾斜角为90时,斜率不存在所以a、c错误;倾斜角为135的直线的斜率为1,所以b错误;只有d正确2已知经过两点(5,m)和(m,8)的直线的斜率等于1,则m的值是()a5b8c. d7解析:选c由斜率公式可得1,解之得m.3直线l经过原点和(1,1),则它的倾斜角为_解析:kl1,因此倾斜角为135.答案:1354已知三点a(a,2),b(3,7),c(2,9a)在同一条直线上,实数a的值为_解析:a、b、c三点共线,kabkbc,即,a2或.答案:2或5已知a(m,m3),b(2,m1),c(1,4),直线ac的斜率等于直线bc的斜率的3倍,求m的值解:由题意直线ac的斜率存在,即m1.kac,kbc.3.整理得:m1(m5)(m1),即(m1)(m4)0,m4或m1(舍去)m4.课时达标检测一、选择题1给出下列说法,正确的个数是()若两直线的倾斜角相等,则它们的斜率也一定相等;一条直线的倾斜角为30;倾斜角为0的直线只有一条;直线的倾斜角的集合|0180与直线集合建立了一一对应关系a0 b1c2 d3解析:选a若两直线的倾斜角为90,则它们的斜率不存在,错;直线倾斜角的取值范围是0,180),错;所有垂直于y轴的直线倾斜角均为0,错;不同的直线可以有相同的倾斜角,错2过两点a(4,y),b(2,3)的直线的倾斜角为45,则y()a b.c1 d1解析:选ctan 45kab,即1,所以y1.3.如图,设直线l1,l2,l3的斜率分别为k1,k2,k3,则k1,k2,k3的大小关系为()ak1k2k3bk1k3k2ck2k1k3dk3k2k1解析:选a根据“斜率越大,直线的倾斜程度越大”可知选项a正确4经过两点a(2,1),b(1,m2)的直线l的倾斜角为锐角,则m的取值范围是()am1 bm1c1m1 dm1或m1解析:选c直线l的倾斜角为锐角,斜率k0,1m1.5(2012广州高一检测)如果直线l过点(1,2),且不通过第四象限,那么l的斜率的取值范围是()a0,1 b0,2c. d(0,3解析:选b过点(1,2)的斜率为非负且最大斜率为此点与原点的连线斜率时,图象不过第四象限二、填空题6已知a0,若平面内三点a(1,a),b(2,a2),c(3,a3)共线,则a_.解析:若平面内三点共线,则kabkbc,即,整理得a22a10,解得a1,或a1(舍去)答案:17如果直线l1的倾斜角是150,l2l1,垂足为b.l1,l2与x轴分别相交于点c,a,l3平分bac,则l3的倾斜角为_解析:因为直线l1的倾斜角为150,所以bca30,所以l3的倾斜角为(9030)30.答案:308已知实数x,y满足方程x2y6,当1x3时,的取值范围为_解析:的几何意义是过m(x,y),n(2,1)两点的直线的斜率,因为点m在函数x2y6的图象上,且1x3,所以可设该线段为ab,且a,b,由于kna,knb,所以的取值范围是.答案:三、解答题9已知直线l过点a(1,2),b(m,3),求直线l的斜率和倾斜角的取值范围解:设l的斜率为k,倾斜角为,当m1时,斜率k不存在,90,当m1时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论