




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省罗山高中2016届高三数学复习精选练习(理数,含解析):一次函数和二次函数(2)1、设函数,若关于的方程有三个不同的实数根,则等于 () a13b5cd【答案】b2、已知二次函数满足:;(1)求函数的解析式;(2)求函数在上的最值【答案】(1)(2);思路点拨:(1)求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;对于本题已知函数的类型,就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系;(2)求函数的最值没有固定的模式,常用的方法主要有配方法,数形结合及函数的单调性试题解析:(1)设函数,由得,又,所以有,整理得:,此式对恒成立,所以,解得,所以函数;(2)在上单减,在上单增,所以,又,所以3、已知函数,则它们的图象可能是( )【答案】b4、若函数,常数,则()a存在使是奇函数 b存在使是偶函数c在上是增函数 d在上是减函数【答案】b5、如果函数在区间(,4上是减函数,那么实数a的取值范围是( ) a a5 ba3 ca9 da7【答案】c6、某工厂去年产值是a,计划今后五年内每年比上一年产值增长10%,从今年起到第五年这个工厂的总产值是 ( )a. 1.14a b. 1.1(1.15-1)a c. 10(1.15-1)a d. 11(1.15-1)a 【答案】d7、对一切实数x,所有的二次函数(ab)的值均为非负实数则的最大值是()abc3d2【答案】a8、已知实数分别满足:,则的最小值是( )a0 b26 c28 d30【答案】c9、已知函数,对任意实数都有成立,若当时,恒成立,则的取值范围是( )a b c或 d不能确定【答案】c10、设函数f(x)=,g(x)=ax2+bx(a,br,a0),若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点a(x1,y1),b(x2,y2),则下列判断正确的是()a当a0时,x1+x20,y1+y20 b当a0,y1+y20 c当a0时,x1+x20,y1+y20时,x1+x20【答案】d 11、已知函数,若,使得,则实数的取值范围是()abcd【答案】a12、如果抛物线经过点(-1,0)和(3,0),那么它的对称轴是直线a.x = 0b.x = 1c.x = 2d.x = 3【答案】b【解析】抛物线经过点(-1,0)和(3,0),则对称轴是x=.13、若函数在上单调递增,则实数的取值范围是 .【答案】14、已知函数对任意的,恒有.若对满足题设条件的任意b,c,不等式恒成立,则m的最小值为 【答案】.【解析】易知由题设有,对任意的xr,2x+bx2+bx+c,即x2+(b-2)x+c-b0恒成立,所以(b-2)2-4(c-b)0,从而于是,且,即c|b|当时,有,令则-1t1,而函数的值域;因此,当c|b|时m的取值集合为当c=|b|时,由知,b=2,c=2.此时而c2-b2=0,从而恒成立综上所述,m的最小值为15、设函数的定义域为,若存在非零实数使得对于任意,有,且,则称为上的高调函数如果定义域为的函数为上的高调函数,那么实数的取值范围是_. 【答案】.【解析】由题意,在-1,+)上恒成立,2kx+m20在-1,+)上恒成立故答案为:16、二次函数的图象如图所示,是图象上的一点,且,则的值为 【答案】.【解析】首先设出的两根分别为,然后由韦达定理得,再根据得到:,即,化简得:,即,所以.最后由点是图像上的一点,所以,所以,即.故答案为.17、设二次函数的图象过点(0,1)和(1,4),且对于任意的实数,不等式恒成立()求函数的表达式;()设,若在区间1,2上是增函数,求实数的取值范围.【答案】();().试题分析:第一问根据函数图像过点可以确定,根据函数图像过点可以确定,从而得到,此时可以求得,利用恒成立,可以确定恒成立,从而得到,解得,进而求得函数解析式,第二问利用题的条件,确定出函数的解析式,根据函数在区间上单调增的条件,得出,从而求得结果.试题解析:(),即恒成立,得,()由在区间上是增函数得在上为增函数且恒正故考点:求二次函数的解析式,复合函数的单调性法则.18、已知:,(1)当时,恒有,求的取值范围;(2)当时,恰有成立,求的值(3)当时,恒有,求的取值范围;【答案】(1);(2)试题分析:考虑f(x)是否为二次函数,首先要进行分类讨论,若f(x)为二次函数则由图像分布的位置可知,f(x)开口向下且与x轴无交点(2)构造一个新函数g(x)=f(x)-mx+7,这样问题转化为二次函数问题(3)对于二次函数在区间上的恒成立问题只需要考虑将f(x)的最大值小于零试题解析:(1)当a=2时,f(x)=-40满足;当a2时,解得-2x2综上,a的取值范围为(2)f(x)mx-7,f(x)-mx+70,即(a-2)x2+(2a-4-m)x+30,令g(x)=(a-2)x2+(2a-4-m)x+30,x(1,3)时,恰有f(x)mx-7成立所以1,3为方程g(x)=0的根,由韦达定理知:1+3=;13=解得a=3m=6(3)由(1)得a=2,成立,当a2,对称轴x=-1解得:综上,a的取值范围为考点:1、二次函数;2、一元二次方程19、某商店购进一批单价为20元的日用品,如果以单价30元销售,那么可卖出400件,如果每提高单价1元,那么销售量q(件)会减少20,设每件商品售价为(元);(1)请将销售量q(件)表示成关于每件商品售价(元)的函数;(2)请问当售价(元)为多少,才能使这批商品的总利润(元)最大?【答案】(1),(2)故当时总利润最大试题分析:(1)销售量在原销售量400的基础上,减去价格上引起的减少量即可得到与售价的函数关系式(2)总利润=每件日用品的利润可卖出的件数,利用公式法可得二次函数的最值,减去原价即为提高的售价试题解析:(1)(2)()二次函数对称轴为由二次函数性质可知当时总利润最大考点:二次函数的实际应用20、已知f(x)=3x2+m(6m)x+6()若关于x的不等式f(x)n的解集为(1,3),求实数m,n的值;()解关于m的不等式f(1)0.【答案】试题分析:()根据二次函数和不等式的关系,得到方程组,解出即可;(2)由已知f(1)=m2+6m+3,得不等式m2+6m+30,解出即可试题解析:解:()f(x)n,3x2m(6m)x+n60,1,3是方程3x2m(6m)x+n6=0的两根,;()由已知f(1)=m2+6m+3,m2+6m+30,m26m30,不等式f(1)0的解集为:考点:二次函数的性质点评:本题考查了二次函数的性质,考查了不等式和二次函数的关系,是一道基础题21、已知二次函数(为常数且)满足且方程有等根(1)求的解析式;(2)设的反函数为若对恒成立,求实数的取值范围【答案】(1);(2)试题分析:(1)先由得函数对称轴,再由方程有等根,得方程的判别式等于零,最后解方程即可;(2)由(1)得出的解析式,再将用表示,最后交换,即可求出反函数的解析式,从而得对恒成立,转化成关于的一次函数恒成立问题,根据函数在上的单调性建立不等式,从而求出所求试题解析:解:(1),函数的对称轴为,即方程有等根,(2)由(1)得,当时,对恒成立,即对恒成立,令,则,对恒成立,考点:1.待定系数法求函数解析式;2.二次函数的性质;3.反函数22、已知函数,对于,恒成立()求函数的解析式;()设函数.证明:函数在区间在上是增函数;是否存在正实数,当时函数的值域为若存在,求出的值,若不存在,则说明理由【答案】();()详见解析;详见解析。试题分析:()由代入-1得:,当时,不等式恒成立,即为:恒成立,根据二次函数图象可知,应满足,结合式,所以,即,所以,则,则;()由得:,根据函数单调性定义,设任意,且,则,则,因为,且,所以,则,所以函数在上为增函数;由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务风险评估及应对策略制定工具
- 电子文档应用符合规范保证承诺书4篇
- 2025年危险化学品安全培训考核试题
- 2025-2030儿童音乐启蒙教育市场消费习惯与课程设计分析报告
- 2025-2030儿童艺术启蒙教育市场增长动力与发展潜力分析
- 2025-2030儿童编程机器人市场分析与发展趋势预测报告
- 2025-2030儿童水上乐园行业市场供需与经营模式及投资前景分析报告
- 互联网信息管理落实承诺函(9篇)
- 2025-2030儿童教育机器人产业发展现状消费者偏好及市场拓展策略报告
- 2025-2030儿童戏剧教育行业师资培训体系与课程标准化研究
- 数学建模-投篮命中率的数学模型名师资料合集(完整版)资料
- 甲午中日战争情景剧
- 石油行业安全培训课件
- 国开电大组织行为学任务四调查报告
- 事业单位医学基础知识名词解释
- 施工现场安全监理危险源清单一览表
- GB/T 233-2000金属材料顶锻试验方法
- FZ/T 74003-2014击剑服
- 颈椎DR摄影技术-
- 功能材料概论-课件
- 一点儿有点儿课件
评论
0/150
提交评论