高中数学 第一章 三角函数 1.1 任意角、弧度 1.1.1 任意角课件 苏教版必修4.ppt_第1页
高中数学 第一章 三角函数 1.1 任意角、弧度 1.1.1 任意角课件 苏教版必修4.ppt_第2页
高中数学 第一章 三角函数 1.1 任意角、弧度 1.1.1 任意角课件 苏教版必修4.ppt_第3页
高中数学 第一章 三角函数 1.1 任意角、弧度 1.1.1 任意角课件 苏教版必修4.ppt_第4页
高中数学 第一章 三角函数 1.1 任意角、弧度 1.1.1 任意角课件 苏教版必修4.ppt_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1章三角函数 1 1任意角 弧度1 1 1任意角 第1章三角函数 学习导航 第1章三角函数 1 角的概念 1 角的定义 一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形 射线的端点称为角的 射线旋转的开始位置和终止位置称为角的 和 如图 顶点 始边 终边 2 正角 负角和零角按 时针方向旋转所形成的角叫做正角 按 时针方向旋转所形成的角叫做负角 如果射线没有作任何旋转 那么也把它看成一个角 叫做 3 象限角和轴线角以角的顶点为坐标原点 角的始边为x轴正半轴 建立平面直角坐标系 角的终边 除端点外 在第几象限 则这个角是第几象限角 如果角的终边在 上 称这个角为轴线角 逆 顺 零角 坐标轴 2 终边相同的角的关系 1 角 与角 终边相同 2 与角 终边相同的角的集合为 k 360 k z k 360 k z 1 下列各组角中 终边相同的是 只填序号 60 300 420 60 300 420 60 300 420 60 300 420 解析 两角相减是360 的整数倍即是终边相同的角 2 在148 475 960 1601 185 这5个角中 属于第二象限角的个数是 4 3 把 1485 写成k 360 0 360 k z 的形式是 解析 1485 5 360 315 4 若 k 180 45 k z 则 为第 象限角 解析 k 180 45 k z 当k为偶数时 设k 2n n z 则 n 360 45 为第一象限角 当k为奇数时 设k 2n 1 n z 则 n 360 225 为第三象限角 综上 为第一或三象限角 5 360 315 一或三 角的概念的推广 已知下列说法 0 90 的角是第一象限角 第一象限角都是锐角 锐角都是第一象限角 小于90 的角都是锐角 其中正确的是 填序号 链接教材p7练习t6 解析 0 90 的角是指0 90 而0 不属于任何象限 锐角是指0 90 的角 第一象限的角为k 360 k 360 90 k z 不一定是锐角 小于90 的角也可为负角 零角 答案 方法归纳 1 解决此类问题的关键在于正确理解象限角 锐角 小于90 的角的概念 2 本题也可采用排除法 这时需掌握判断说法真假的技巧 判断说法为真需要证明 而判断说法为假只需举一反例即可 1 若 是第四象限角 则90 是第 象限角 解析 是第四象限角 k 360 90 k 360 k z k 360 90 k 360 90 k z 90 是第一象限角 一 终边相同的角 2014 北京高一检测 已知 1910 1 把 写成 k 360 k z 0 360 的形式 指出它是第几象限角 2 求 使 与 的终边相同 且 720 0 链接教材p6例1 解 1 1910 360 6余250 1910 6 360 250 250 从而 6 360 250 是第三象限角 2 令 250 k 360 k z 取k 1 2就得到适合 720 0 的角 250 360 110 250 720 470 方法归纳将任意角化为 k 360 0 360 k z 的形式 关键是确定k 可用观察法 较小时适用 也可用除以360 的方法 要注意 正角除以360 按通常的除法进行 负角除以360 商是负数 且余数是正值 2 写出与 1484 37 角的终边相同的角 的集合s 分别求出符合下列条件的角 1 绝对值最小的角 2 把适合不等式 720 360 的元素写出来 解 与 1484 37 角的终边相同的角的集合s k 360 1484 37 k z 1 1484 37 4 360 44 37 4 360 1484 37 44 37 5 360 1484 37 315 23 因此k 4时 绝对值最小的角为 44 37 2 s中适合 720 360 的元素是3 360 1484 37 404 37 4 360 1484 37 44 37 5 360 1484 37 315 23 区域角的表示 已知集合a 30 k 180 90 k 180 k z b 45 k 360 45 k 360 k z 1 试在平面直角坐标系内画出集合a和b中的角的终边所在的区域 2 求a b 链接教材p10练习t11 解 1 如图所示 集合a中的角的终边在阴影 内 集合b中的角的终边在阴影 内 2 集合a b中的角的终边在阴影 和 的公共部分内 所以a b 30 k 360 45 k 360 k z 3 如图 1 图 2 图 3 所示 写出终边落在阴影处 包括边界 的角的集合 解 1 由图 1 可知 角的集合为 40 k 360 50 k 360 k z 2 由图 2 可知 角的集合为 45 k 360 90 k 360 k z 225 k 360 270 k 360 k z 45 2k 180 90 2k 180 k z 45 2k 1 180 90 2k 1 180 k z 45 n 180 90 n 180 n z 3 由图 3 可知 角的集合为 60 k 360 315 k 360 k z 本题满分14分 在与1089 角终边相同的角中 求满足下列条件的角 1 在 360 720 内 2 最大的负角 3 最小的正角 解 与1089 角终边相同角的一般形式为 k 360 1089 k z 3分 1 由 360 720 得 360 k 360 1089 720 k z 1449 k 360 369 k z 所以k 4 3 2 所以在 360 72

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论