高中数学 第一章 基本初等函数(Ⅱ)1.2.4 诱导公式(一)学案 新人教B版必修4.doc_第1页
高中数学 第一章 基本初等函数(Ⅱ)1.2.4 诱导公式(一)学案 新人教B版必修4.doc_第2页
高中数学 第一章 基本初等函数(Ⅱ)1.2.4 诱导公式(一)学案 新人教B版必修4.doc_第3页
高中数学 第一章 基本初等函数(Ⅱ)1.2.4 诱导公式(一)学案 新人教B版必修4.doc_第4页
高中数学 第一章 基本初等函数(Ⅱ)1.2.4 诱导公式(一)学案 新人教B版必修4.doc_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.2.4诱导公式(一) 学习目标1.了解三角函数的诱导公式一三的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题知识链接1对于任意一个角,与它终边相同的角的集合应如何表示?答所有与终边相同的角,连同在内,可以构成一个集合:s|k360,kz,即任何一个与角终边相同的角,都可以表示成角与整数个周角的和2设为任意角,则,的终边与的终边之间有什么对称关系?答相关角终边之间的对称关系与关于原点对称与关于x轴对称与关于y轴对称预习导引1(1)角与k2(kz)的三角函数间的关系cos(k2)cos_,sin(k2)sin_,tan(k2)tan_.(一)(2)角与的三角函数间的关系cos()cos_,sin()sin_,tan()tan_.(二)(3)角与(2k1)(kz)的三角函数间的关系cos(2k1)cos_,sin(2k1)sin_,tan(2k1)tan_.(三)22k(kz),(2k1),的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号. 简记为“函数名不变,符号看象限”!要点一给角求值问题例1求下列各三角函数式的值:(1)sin 1 320;(2)cos;(3)tan(945)解(1)方法一sin 1 320sin(3360240)sin 240sin(18060)sin 60.方法二sin 1 320sin(4360120)sin(120)sin(18060)sin 60.(2)方法一coscos coscos()cos .方法二coscoscoscos .(3)tan(945)tan 945tan(2252360)tan 225tan(18045)tan 451.规律方法此问题为已知角求值,主要是利用诱导公式把任意角的三角函数转化为锐角的三角函数求解如果是负角,一般先将负角的三角函数化为正角的三角函数跟踪演练1求sincos 的值(nz)解当n为奇数时,原式sin sin sin cos .当n为偶数时,原式sin cos sincossin .要点二给值求值问题例2已知cos(75),且为第四象限角,求sin(105)的值解cos(75)0,且为第四象限角,75是第三象限角sin(75) .sin(105)sin sin(75).规律方法解答这类给值求值的问题,首先应把所给的值进行化简,再结合被求值的式子的特点,观察所给值的式子与被求式的特点,找出它们之间的内在联系,特别是角之间的关系,恰当地选择诱导公式跟踪演练2已知cos(),2,求sin(3)cos()的值解cos()cos ,cos ,2,2,sin .sin(3)cos()sin(3)cos()sin()(cos )sin cos (sin cos ).要点三三角函数式的化简例3化简下列各式:(1)(kz);(2).解(1)当k2n(nz)时,原式1;当k2n1(nz)时,原式1.综上,原式1.(2)原式1.规律方法三角函数式的化简方法:(1)利用诱导公式,将任意角的三角函数转化为锐角的三角函数(2)常用“切化弦”法,即表达式中的切函数通常化为弦函数(3)注意“1”的变式应用:如1sin2 cos2tan .跟踪演练3化简下列各式:(1);(2).解(1)原式1.(2)原式1求下列三角函数的值:(1)sin 690;(2)cos;(3)tan(1 845)解(1)sin 690sin(360330)sin 330sin(180150)sin 150sin(18030)sin 30.(2)coscos cos(6)cos coscos .(3)tan(1 845)tan(536045)tan(45)tan 451.2化简:.解原式1.3已知f(),求f.解f()cos ,fcos .4证明:(1)ncos ,nz.证明当n为偶数时,令n2k,kz,左边cos .右边(1)2kcos cos ,左边右边当n为奇数时,令n2k1,kz,左边cos .右边(1)2k1cos cos ,左边右边综上所述,(1)ncos ,nz成立1.明确各诱导公式的作用诱导公式作用公式一将角转化为02之间的角求值公式二将负角转化为正角求值公式三将02内的角转化为0之间的角求值2.诱导公式的记忆这三组诱导公式的记忆口诀是“函数名不变,符号看象限”其含义是诱导公式两边的函数名称一致,符号则是将看成锐角时原角所在象限的三角函数值的符号看成锐角,只是公式记忆的方便,实际上可以是任意角.一、基础达标1sin 585的值为()a b. c d.答案a2若n为整数,则代数式的化简结果是()atan btan ctan d.tan 答案c3若cos(),2,则sin(2)等于()a. b c. d答案d解析由cos(),得cos ,故sin(2)sin (为第四象限角)4tan(5)m,则的值为()a. b. c1 d1答案a解析原式.5记cos(80)k,那么tan 100等于()a. bc. d答案b解析cos(80)k,cos 80k,sin 80.tan 80.tan 100tan 80.6已知cos,则cos_.答案解析coscoscos.7化简:sin(n)cos(n),nz.解当n为偶数时,n2k,kz.原式sin(2k)cos(2k)sincos(sin )cossin cos sin cos .当n为奇数时,n2k1,kz.原式sin(2k)cos(2k)sincossin cossin cos .sin(n)cos(n),nz.二、能力提升8若sin()log8 ,且,则cos()的值为()a. bc d以上都不对答案b解析sin()sin log2322,cos()cos .9已知tan(4)m(m1),则的值为_答案10设f(x)asin(x)bcos(x)2,其中a、b、为非零常数若f(2 015)1,则f(2 016)_.答案3解析f(2 015)asin(2 015)bcos(2 015)2asin()bcos()22(asin bcos )1,asin bcos 1,f(2 016)asin(2 016)bcos(2 016)2asin bcos 23.11若cos(),求的值解原式tan .cos()cos()cos ,cos .为第一象限角或第四象限角当为第一象限角时,cos ,sin ,tan ,原式.当为第四象限角时,cos ,sin ,tan ,原式.综上,原式.12已知tan ,是关于x的方程3x23kx3k2130的两实根,且3,求cos(2)sin(2)的值解因为tan ,是关于x的方程3x23kx3k2130的两实根,所以tan (3k213)1,可得k2.因为30,sin 0,cos 0,故k,所以tan ,所以sin cos ,所以(cos sin )212sin cos 12.因为cos sin 0,所以cos sin .所以cos(2)sin(2)cos s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论