



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
向量与三角形的重心、垂心、内心、外心的关系一、四心的概念介绍、(1)重心中线的交点:重心将中线长度分成2:1;(2)垂心高线的交点:高线与对应边垂直;(3)内心角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。二、四线与向量的结合 (记忆:交叉分配系数) (记忆:分母对应分配系数)应用1:(1)中线: (2)高线: (3)角平分线: (4)中垂线:应用2.四线上的动点表示:(1)中线上的动点: 或(2)高线上的动点:,(3)角平分线上的动点:(4)中垂线上的动点: ,三、四心与向量的结合1.(记忆:拉力平衡原则)应用:(1)是的重心. =1:1:1 (2)为的垂心. (3)O为的内心. (4)为的外心 2.四心的向量表示:(1)是的重心. (2)为的垂心. (3)O为的内心. (4)为的外心 四典型例题:一、与三角形“四心”相关的向量问题题1:已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足, . 则P点的轨迹一定通过ABC的A. 外心 B. 内心 C. 重心 D. 垂心题2:已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足, . 则P点的轨迹一定通过ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心题3:已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足, 则动点P的轨迹一定通过ABC的A. 重心 B. 垂心 C. 外心 D. 内心题4:已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足, 则动点P的轨迹一定通过ABC的( )A. 重心 B. 垂心 C. 外心 D. 内心题5:已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足, , 则动点P的轨迹一定通过ABC的( )A. 重心 B. 垂心 C. 外心 D. 内心题6:三个不共线的向量满足=+) = 0,则O点是ABC的( )A. 垂心 B. 重心 C. 内心 D. 外心题7:已知O是ABC所在平面上的一点,若= 0, 则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心题8:已知O是ABC所在平面上的一点,若(其中P为平面上任意一点), 则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心题9:已知O是ABC所在平面上的一点,若,则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心题10:已知O为ABC所在平面内一点,满足=,则O点是ABC的( )A. 垂心 B. 重心 C. 内心 D. 外心题11:已知O是ABC所在平面上的一点,若= 0,则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心题12:已知O是ABC所在平面上的一点,若= 0,则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心题13:已知O是ABC所在平面上的一点,若(其中P是ABC所在平面内任意一点),则O点是ABC的( )A. 外心 B. 内心 C. 重心 D. 垂心题14:ABC的外接圆的圆心为O,两边上的高的交点为H,=,则实数m =_.二、与三角形形状相关的向量问题题15:已知非零向量与满足= 0且,则ABC为( )A. 三边均不相等的三角形 B. 直角三角形C. 等腰非等边三角形 D. 等边三角形题16:已知O为ABC所在平面内一点,满足,则ABC一定是( )A. 等腰直角三角形 B. 直角三角形C. 等腰三角形 D. 等边三角形题17:已知ABC,若对任意,则ABC( )A. 必为锐角三角形 B. 必为钝角三角形C. 必为直角三角形 D. 答案不确定题18:已知a, b, c分别为ABC中A, B, C的对边,G为ABC的重心,且= 0, 则ABC为( )A. 等腰直角三角形 B. 直角三角形C. 等腰三角形 D. 等边三角形三、与三角形面积相关的向量问题题19:已知点O是ABC内一点,= 0, 则:(1) AOB与AOC的面积之比为_;(2) ABC与AOC的面积之比为_;GABCMPQ(3) ABC与四边形ABOC的面积之比为_.四、向量的基本关系(共线)题20:如图,已知点G是ABC的重心,若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能网联汽车燃料电池管理技术考核试卷
- 难点解析-人教版八年级物理上册第5章透镜及其应用综合测试试题(含详解)
- 2025年新能源行业储能系统锂电池双碳目标政策合规考核试卷
- 2025年数据库系统工程师《大数据处理技术》混合云环境下分布式数据库部署策略考核试卷
- 解析卷-人教版八年级上册物理《物态变化》章节练习试卷(含答案解析)
- 考点解析人教版八年级物理上册第5章透镜及其应用-生活中的透镜专题测评试卷(详解版)
- 考点解析-人教版八年级物理上册第6章质量与密度-密度综合练习试题(解析版)
- 考点解析人教版八年级物理上册第4章光现象-光的色散综合练习试卷(含答案详解)
- 全体教师大会上副校长讲话:警惕!7个教学环节正在吞噬课堂质量-从备课到教研的破局之道
- 2024年船舶尾气排放监测技术考核试卷
- 2024-2025学年广东省深圳市高二上学期第一次月考数学检测试题(含解析)
- 【MOOC】中国传统艺术-篆刻、书法、水墨画体验与欣赏-哈尔滨工业大学 中国大学慕课MOOC答案
- 2024-2025华为ICT大赛(实践赛)-网络赛道理论考试题库大全-中(多选题)
- 数据中心运维服务投标方案
- 语文-安徽省鼎尖名校(安徽小高考)2025届高三11月联考试卷和答案
- 膜结构车棚施工方案
- 《浅论鲁迅小说中塑造的女性形象》11000字(论文)
- 2025年九省联考新高考 物理试卷(含答案解析)
- 北师大版五年级上册数学全册单元教材分析
- 环境卫生学-练习题(有答案)
- 二次结构阶段危险源清单(房建)
评论
0/150
提交评论