




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
25 唐正帅供稿排列问题1从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?共有6种不同的排法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙问题2从这四个字母中,每次取出3个按顺序排成一列,共有多少种不同的排法?概念: 从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列说明:(1)排列的定义包括两个方面:取出元素,按一定的顺序排列;定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示排列数公式及其推导:=,排列数公式:()全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n的阶乘) 规定2排列数的另一个计算公式:= 1(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1);(2);(3)2四支足球队争夺冠、亚军,不同的结果有() 种 10种 12种 16种3信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有( )3种 6种 1种 27种45人站成一排照相,甲不站在排头的排法有( ) 24种 72种 96种 120种5给出下列问题:有10个车站,共需要准备多少种车票?有10个车站,共有多少中不同的票价?平面内有10个点,共可作出多少条不同的有向线段?有10个同学,假期约定每两人通电话一次,共需通话多少次?从10个同学中选出2名分别参加数学和物理竞赛,有多少中选派方法?以上问题中,属于排列问题的是 (填写问题的编号)6若 ,则以为坐标的点共有 个7从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,并排定他们的出场顺序,有多少种不同的方法?8从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有多少中不同的种植方法?9分别写出从这4个字母里每次取出两个字母的所有排列;10写出从这六个元素中每次取出3个元素且必须含有元素的所有排列答案:1. C 2. B 3. C 4. B 5. 6. 63 7. 60 8. 24 9. 348;64 10.共有个:ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc 11. 共有个,具体的排列略例解方程:3 解:由排列数公式得:, ,即,解得 或,且,原方程的解为例解不等式:解:原不等式即,也就是,化简得:,解得或,又,且,所以,原不等式的解集为例求证:(1);(2)证明:(1),原式成立(2)右边 原式成立例5化简:;解:原式提示:由,得, 原式 说明:1若,则 ( ) 2与不等的是 ( ) 3若,则的值为 ( ) 4计算: ; 5若,则的解集是 6(1)已知,那么 ;(2)已知,那么= ;(3)已知,那么 ;(4)已知,那么 7一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?8一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?答案:1. B 2. B 3. A 4. 1,1 5. 6. (1) 6 (2) 181440 (3) 8 (4) 5 7. 1680 8. 24 例1(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同送法的种数是:,所以,共有60种不同的送法(2)由于有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是:,所以,共有125种不同的送法说明:本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3位同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1种,各人得到那种书相互之间没有联系,要用分步计数原理进行计算例2某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?解:分3类:第一类用1面旗表示的信号有种;第二类用2面旗表示的信号有种;第三类用3面旗表示的信号有种,由分类计数原理,所求的信号种数是:,答:一共可以表示15种不同的信号例3将位司机、位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?分析:解决这个问题可以分为两步,第一步:把位司机分配到四辆不同班次的公共汽车上,即从个不同元素中取出个元素排成一列,有种方法;第二步:把位售票员分配到四辆不同班次的公共汽车上,也有种方法,利用分步计数原理即得分配方案的种数解:由分步计数原理,分配方案共有(种)答:共有576种不同的分配方案例4用0到9这10个数字,可以组成多少个没有重复数字的三位数?解法1:用分步计数原理:所求的三位数的个数是:解法2:符合条件的三位数可以分成三类:每一位数字都不是0的三位数有个,个位数字是0的三位数有个,十位数字是0的三位数有个,由分类计数原理,符合条件的三位数的个数是:解法3:从0到9这10个数字中任取3个数字的排列数为,其中以0为排头的排列数为,因此符合条件的三位数的个数是-例5(1)7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列5040(2)7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:76543217!5040(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列=720(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步 甲、乙站在两端有种;第二步 余下的5名同学进行全排列有种,所以,共有=240种排列方法(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有种方法;第二步从余下的5位同学中选5位进行排列(全排列)有种方法,所以一共有2400种排列方法解法2:(排除法)若甲站在排头有种方法;若乙站在排尾有种方法;若甲站在排头且乙站在排尾则有种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有=2400种三、课堂练习:1将1,2,3,4填入标号为1,2,3,4的四个方格里,没格填一个数字,则每个方格的标号与所填的数字均不相同的填法( )种. 6 9 11 232有5列火车停在某车站并排的五条轨道上,若快车A不能停在第三条轨道上,货车B不能停在第一条轨道上,则五列火车的停车方法有( )种.78 72 120 96 3由0,3,5,7这五个数组成无重复数字的三位数,其中是5的倍数的共有多少个( )9 21 24 42 4从七个数中,每次选不重复的三个数作为直线方程的系数,则倾斜角为钝角的直线共有( )条. 14 30 70 60 5从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有 _种不同的种植方法 69位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有 种7(1)由数字1,2,3,4,5可以组成多少个无重复数字的正整数? (2)由数字1,2,3,4,5可以组成多少个无重复数字,并且比13000大的正整数?8学校要安排一场文艺晚会的11个节目的出场顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2、5、7、10的位置,3个舞蹈节目要求排在第3、6、9的位置,2个曲艺节目要求排在第4、8的位置,共有多少种不同的排法?9某产品的加工需要经过5道工序,(1)如果其中某一工序不能放在最后加工,有多少种排列加工顺序的方法?(2)如果其中某两工序不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?10一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、外语、微机、体育、地理六节课,要求上午不排体育,数学必须排在上午,微机必须排在下午,共有多少种不同的排法?11. 由数字0,1,2,3,4,(1)可组成多少个没有重复数字且比20000大的自然数?(2)2不在千位,且4不在十位的五位数有多少个? 答案:1. B 2. A 3. B 4. C 5. 24 6. 166320 7.325; 1148. 288 9.96; 36 10. 4811. (1),(2)() 例1 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑);解法二:(从特殊元素考虑)若选:;若不选:,则共有种;解法三:(间接法)例2 7位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有种方法;再将甲、乙两个同学“松绑”进行排列有种方法所以这样的排法一共有种(2)甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有720种(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的4个元素进行全排列有种方法;最后将甲、乙两个同学“松绑”进行排列有种方法所以这样的排法一共有960种方法解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方法,所以,丙不能站在排头和排尾的排法有种方法解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有种方法,再将其余的5个元素进行全排列共有种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有960种方法(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,一共有排法种数:(种)例37位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法);解法二:(插空法)先将其余五个同学排好有种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有种方法,所以一共有种方法(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有种方法,所以一共有1440种例45男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列解:(1)先将男生排好,有种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,有种排法故本题的排法有(种);(2)方法1:;方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法故本题的结论为(种)三、课堂练习: 1停车场上有一排七个停车位,现有四辆汽车需要停放,若要使三个空位连在一起,则停放方法数为( ) 2五种不同商品在货架上排成一排,其中两种必须连排,而两种不能连排,则不同的排法共有( )12种 20种 24种 48种 36张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的分法有( ) 4某人射出8发子弹,命中4发,若命中的4发中仅有3发是连在一起的,那么该人射出的8发,按“命中”与“不命中”报告结果,不同的结果有( )720种 480种 24种 20种 5设且,则在直角坐标系中满足条件的点共有 个67人站一排,甲不站排头,也不站排尾,不同的站法种数有 种;甲不站排头,乙不站排尾,不同站法种数有 种7一部电影在相邻5个城市轮流放映,每个城市都有3个放映点,如果规定必须在一个城市的各个放映点放映完以后才能转入另一个城市,则不同的轮映次序有 种(只列式,不计算)8一天课表中,6节课要安排3门理科,3门文科,要使文、理科间排,不同的排课方法有 种;要使3门理科的数学与物理连排,化学不得与数学、物理连排,不同的排课方法有 种9某商场中有10个展架排成一排,展示10台不同的电视机,其中甲厂5台,乙厂3台,丙厂2台,若要求同厂的产品分别集中,且甲厂产品不放两端,则不同的陈列方式有多少种?10用数字0,1,2,3,4,5组成没有重复数字的四位数,其中(1)三个偶数字连在一起的四位数有多少个?(2)十位数字比个位数字大的有多少个?11在上题中,含有2和3并且2和3不相邻的四位数有多少个?答案:1. C 2. C 3. D 4. D 5. 6 6. 3600, 3720 7. 8. 72, 144 9. 10.30; 15011. 66种组合 提出问题: 示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合说明:不同元素;“只取不排”无序性;组合数:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数用符号表示组合数公式的推导:排列可看做先从n个元素中取出m个为一组,再对m个数全排列或组合数的性质1: “取法”与“剩法”是“一一对应”的思想 或组合数的性质2:+三、讲解范例:例1计算:(1); (2); 例2求证:例3设 求的值 解:由题意可得: ,解得, 或或,当时原式值为7;当时原式值为7;当时原式值为11所求值为4或7或11例4(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?解:(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?解:问题可以分成2类:第一类 2名男生和2名女生参加,有中选法;第二类 3名男生和1名女生参加,有中选法依据分类计数原理,共有100种选法错解:种选法引导学生用直接法检验,可知重复的很多例54名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有,所以,一共有+100种方法解法二:(间接法)课堂练习: 1判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法? (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?2名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( ) 3如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( ) 对 对 对 对4设全集,集合、是的子集,若有个元素,有个元素,且,求集合、,则本题的解的个数为 ( ) 5从位候选人中选出人分别担任班长和团支部书记,有 种不同的选法6从位同学中选出人去参加座谈会,有 种不同的选法7圆上有10个点:(1)过每2个点画一条弦,一共可画 条弦;(2)过每3个点画一个圆内接三角形,一共可画 个圆内接三角形8(1)凸五边形有 条对角线;(2)凸五边形有 条对角线9计算:(1);(2)10个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种? 11空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?12壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?13写出从这个元素中每次取出个的所有不同的组合答案:1. (1)组合, (2)排列 2. B 3. A 4. D 5. 30 6. 15 7. (1)45 (2) 120 8. (1)5(2) 9. 455; 10. 10; 2011. ; 12. 13. ; ; ; ; 例1一个口袋内装有大小不同的7个白球和1个黑球,(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?解:(1),或,;(2);(3)例2(1)计算:;(2)求证:+例3解方程:(1);(2)解方程:解:(1)由原方程得或,或, 又由得且,原方程的解为或(2)原方程可化为,即,解得或, 经检验:是原方程的解 1方程的解集为( ) 2式子()的值的个数为 ( ) 3化简: ; 4若,则的值为 ;5有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;6要从5件不同的礼物中选出3件分送3位同学,不同的方法种数是 ;75名工人分别要在3天中选择1天休息,不同方法的种数是 ;8集合有个元素,集合有个元素,从两个集合中各取出1个元素,不同方法的种数是 9从这个数中选出2个不同的数,使这两个数的和为偶数,有_ 种不同选法10正12边形的对角线的条数是 11已知,求的值; 12解方程:136人同时被邀请参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?14在所有的三位数中,各位数字从高到低顺次减小的数共有 个答案:1. D 2. A 3. 0 4. 190 5. 10 6. 60 7. 243 8. 9. 90 10. 54 11. 28或者56 12. 2 或者 13. 6314. ,可以保证0在最低位 例1100件产品中,有98件合格品,2件次品从这100件产品中任意抽出3件(1)一共有多少种不同的抽法;(2)抽出的3件都不是次品的抽法有多少种?(3)抽出的3件中恰好有1件是次品的抽法有多少种?(4)抽出的3件中至少有1件是次品的取法有多少种?解:(1);(2);(3);(4)解法一:(直接法); 解法二:(间接法)例2从编号为1,2,3,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法? 解:分为三类:1奇4偶有 ; 3奇2偶有; 5奇1偶有,一共有+例3现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其 中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:让两项工作都能担任的青年从事英语翻译工作,有;让两项工作都能担任的青年从事德语翻译工作,有;让两项工作都能担任的青年不从事任何工作,有,一共有+42种方法例4甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?解法一:(排除法)解法二:分为两类:一类为甲不值周一,也不值周六,有;另一类为甲不值周一,但值周六,有,一共有+42种方法例56本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?解:第一步:从6本不同的书中任取2本“捆绑”在一起看成一个元素有种方法;第二步:将5个“不同元素(书)”分给5个人有种方法根据分步计数原理,一共有1800种方法 1有两条平行直线和,在直线上取个点,直线上取个点,以这些点为顶点作三角形,这样的三角形共有( ) 2名同学分别到三个不同的路口进行车流量的调查,若每个路口人,则不同的分配方案有 ( )种 3本不同的书,全部分给个学生,每个学生至少一本,不同分法的种数为 4已知甲、乙两组各有人,现从每组抽取人进行计算机知识竞赛,比赛成员的组成共有 种可能 5在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,第3题的2个小题中选做1个小题,有 种不同的选法6从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成 个没有重复数字的五位数7正六边形的中心和顶点共个点,以其中三个点为顶点的三角形共有 个8从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有 种选法;(2)如果男生中的甲与女生中的乙必须在内,有 种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有 种选法;(4)如果4人中必须既有男生又有女生,有 种选法9在200件产品中,有2件次品从中任取5件,(1)“其中恰有2件次品”的抽法有 种;(2)“其中恰有1件次品”的抽法有 种;(3)“其中没有次品”的抽法有 种;(4)“其中至少有1件次品”的抽法有 种10某科技小组有名同学,现从中选出人去参观展览,至少有名女生入选时的不同选法有种,求该科技小组中女生的人数答案:1. A 2. A 3. B 4. 5. 6. 7. 8. 9. 10. 女生的人数是2 思路:分和两种情况讨论1以一个正方体的顶点为顶点的四面体共有 个 解:正方体有8个顶点,任取4个顶点的组合数为个,其中四点共面的情况分2类:构成表面的有6组;构成对角面的有6组,所以,能形成四面体(个)2以一个正方体的8个顶点连成的异面直线共有 对解:由上题可知以一个正方体的顶点为顶点的四面体共有58个,每个四面体的四条棱可以组成3对异面直线,因此以一个正方体的8个顶点连成的异面直线共有358174对另解:对 36本不同的书全部送给5人,有多少种不同的送书方法?5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法?5本相同的书全部送给6人,每人至多1本,有多少种不同的送书方法?答案:;例16本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙三人,每人至少1本 解:(1)根据分步计数原理得到:种;(2)分给甲、乙、丙三人,每人两本有种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有种方法根据分步计数原理可得:,所以因此,分为三份,每份两本一共有15种方法点评:本题是分组中的“均匀分组”问题一般地:将个元素均匀分成组(每组个元素),共有 种方法(3)这是“不均匀分组”问题,一共有种方法(4)在(3)的基础上再进行全排列,所以一共有种方法(5)可以分为三类情况:“2、2、2型”即(1)中的分配情况,有种方法;“1、2、3型”即(4)中的分配情况,有种方法;“1、1、4型”,有种方法,所以,一共有90+360+90540种方法例2身高互不相同的7名运动员站成一排,(1)其中甲、乙、丙三人自左向右从高到矮排列的排法有多少种?(2)其中甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?解:(1)(法一):设想有7个位置,先将其他4人排好,有种排法;再将甲、乙、丙三人自左向右从高到矮排在剩下的3个位置上,只有1种排法,根据分步计数原理,一共有种方法(法二):设想有7个位置,先将甲、乙、丙三人自左向右从高到矮排在其中的3个位置上,有 种排法;将其他4人排在剩下的4个位置上,有种排法;根据分步计数原理,一共有种方法 (2)(插空法)先将其余4个同学进行全排列一共有种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有种方法根据分步计数原理,一共有种方法例3(1) 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2) 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解:(1)根据分步计数原理:一共有种方法;(2)(捆绑法)第一步:从四个不同的小球中任取两个“捆绑”在一起看成一个元素有种方法;第二步:从四个不同的盒中任取三个将球放入有种方法,所以,一共有144种方法例4马路上有编号为1,2,3,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为种方法例5九张卡片分别写着数字0,1,2,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?解:可以分为两类情况: 若取出6,则有种方法;若不取6,则有种方法,根据分类计数原理,一共有+602种方法 1某班元旦联欢会原定的个学生节目已排成节目单,开演前又增加了两个教师节目如果将这两个教师节目插入原节目单中,那么不同插法的种数为 2从人中选派人到个不同的交通岗的个中参加交通协管工作,则不同的选派方法有 ( ) 3某班分成个小组,每小组人,现要从中选出人进行个不同的化学实验,且每组至多选一人,则不同的安排方法种数是 ( ) 45个人分4张同样的足球票,每人至多分一张,而且票必须分完,那么不同的分法种数是 5某学生要邀请10位同学中的6位参加一项活动,其中有2位同学要么都请,要么都不请,共有 种邀请方法6一个集合有5个元素,则该集合的非空真子集共有 个7平面内有两组平行线,一组有条,另一组有条,这两组平行线相交,可以构成 个平行四边形8空间有三组平行平面,第一组有个,第二组有个,第三组有个,不同两组的平面都相交,且交线不都平行,可构成 个平行六面体9在某次数学考试中,学号为的同学的考试成绩,且满足,则这四位同学的考试成绩的所有可能情况有 种10某人制订了一项旅游计划,从个旅游城市中选择个进行游览如果其中的城市、必选,并且在旅游过程中必须按先后的次序经过、两城市(、两城市可以不相邻),则不同的游览路线有 种11高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有 种不同的调换方法12某兴趣小组有名男生,名女生:(1)从中选派名学生参加一次活动,要求必须有名男生,名女生,且女生甲必须在内,有 种选派方法;(2)从中选派名学生参加一次活动, 要求有女生但人数必须少于男生,有_种选派方法;(3)分成三组,每组人,有 种不同分法答案:1. A 2. D 3. C 4. 5. 6. 7. 8. 9. 10. 11. 12. 例1某考生打算从所重点大学中选所填在第一档次的个志愿栏内,其中校定为第一志愿;再从所一般大学中选所填在第二档次的三个志愿栏内,其中、两校必选,且在前问:此考生共有多少种不同的填表方法?解:先填第一档次的三个志愿栏:因校定为第一档次的第一志愿,故第一档次的二、三志愿有种填法;再填第二档次的三个志愿栏:、两校有种填法,剩余的一个志愿栏有种填法由分步计数原理知,此考生不同的填表方法共有(种)例2如图是由12个小正方形组成的矩形网格,一质点沿网格线从点到点的不同路径之中,最短路径有 条解: 总揽全局:把质点沿网格线从点A到点的最短路径分为七步,其中四步向右,三步向上,不同走法的区别在于哪三步向上,因此,本题的结论是:例3圆周上有个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是多少?解:要使交点个数最多,则只需所有的交点都不重合显然,并不是每两条弦都在圆内有交点,但如果两条弦相交,则交点就是以这两条弦的四个端点为顶点的四边形的对角线的交点,也就是说,弦在圆内的交点与以圆上四点为顶点的四边形是一一对应的因此只需求以圆上四点为顶点的四边形的个数,即个 变式:本题构造了四边形以求得满足条件的交点,类似的,前面讲过一个问题:以一个正方体的8个顶点连成的异面直线共有 对解:以一个正方体的顶点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024重庆南川区中小学教师招聘考试真题及答案
- 2025年员工劳动合同书车辆购买协议,公司名下车辆转让合同书
- 基于用户体验的医药电商优化措施
- 数理统计学在社会科学研究中的制度
- 火山岛屿的火山探险制度
- 小学高年级随文阅读教学策略研究意义
- 房屋按揭合同(集锦15篇)
- 建筑安装工程拆迁房屋合同(3篇)
- 2025山东临沂市兰陵文化旅游发展有限公司权属企业面向社会招聘戏曲演员和讲解员初试和复试人员笔试历年参考题库附带答案详解(3卷合一)
- 2025年临沂市工程学校公开招聘教师(10名)模拟试卷及一套完整答案详解
- 2025年市场营销自考真题及答案
- 数字化转型文化旅游产业智慧化发展研究报告
- 低空经济全景图:新质生产力驱动下的万亿级新赛道与区域标杆实践
- 硫酸安全培训与防范课件
- 2025年营造林监理工程师试题
- 空乘盘发课件
- 中建土建劳务招标标准清单编制参考
- 土地调查评估服务方案(3篇)
- 小学生英语水果课件下载
- 湖北省老年教育管理办法
- 人教新版(PEP)四年级上册单元测试卷 Unit1 Helping at home (含听力音频听力原文及答案)
评论
0/150
提交评论