文档简介
1 Microsystem Technologies 10 2004 531 535 Springer Verlag 2004 DOI 10 1007 s00542 004 0387 2 Replication of microlens arrays by injection molding B K Lee D S Kim T H Kwon B K Lee D S Kim T H Kwon however flow rate has the similar effect to PC It might be reminded that packing time does not affect the replicabilityifa gate is frozen since frozen gate prevents material from flowing into the cavity Therefore the effect of packing time disappears after a certain time depending on the processing conditions Fig 4a c leftside Surface profiles of microlens PC with diameter of 300 m a effect of packing pressure b effect of flow rate ceffectofpacking time Fig 5a c rightside Surface profilesofmicrolens PMMA with diameter of 300 m a effect of packing pressure b effect of flow rate c effectof packing time 6 4 24 24 24 2 SurfaceSurfaceSurfaceSurface roughnessroughnessroughnessroughness Averaged surface roughness Ra values of 300 m diameter microlenses and the mold insert were measured by an atomic force microscope Bioscope AFM Digital Instruments The measurements were performed around the top of each microlens and the measuring area was 5 m 5 m Figure 6 shows AFM images and measured Ra values of microlenses PMMA replicas of microlens have the lowest Ra value 1 606 nm It may be noted that AFM measurement indicated that Ra value of injection molded microlens arrays is smaller than the corresponding one of the mold insert The reason for the improved surface roughness in the replicated microlens arrays is not clear at this moment but might be attributed to the reflow caused by surface tension during a cooling process It may be further noted that the Ra value of injection molded microlens arrays is comparable with that of fine optical components in practical use Fig 6 AFM images and averaged surface roughness Ra values of the mold insert and injection molded 300 mdiametermicrolenses a Nickel mold insert b PS c PMMA d PC 4 34 34 34 3 FocalFocalFocalFocal lengthlengthlengthlength The focal length of lenses can be calculated by a wellknown equation as follows 1 12 111 1 n fRR where f nl R1 and R2 are focal length refractive index of lens material two principal radii of curvature respectively For instance focal lengths of the molded microlenses were approximately calculated as 1 065 mm with R10 624 mm and R2 for 200 m diameter microlens 1 130 mm with R1 0 662 mm and R2 for 300 m microlens and 2 580 mm with R1 1 512 mm and R2 for 500 m microlens according to Eq 1 These calculations were based on an assumption that microlenses are replicated with PC nl 1 586 and have the identical shape of the mold insert It might be mentioned that the geometry of themolded microlens might be inversely deduced from an experimental measurement of the focal length 5 5 5 5 ConclusionConclusionConclusionConclusion The replication of microlens arrays was carried out by the injection molding process with the nickel mold insert which was 7 electroplated from the microlens arrays master fabricated via a modified LIGA process The effects of processing conditions were investigated through extensive experiments conducted with various processing conditions The results showed that the higher packing pressure or the higher flow rate is the better replicability is achieved In comparison the packing time was found to have little effect on the replication of microlens arrays The injection molded microlens arrays had a smaller averaged surface roughness values than the mold insert which might be attributed to the reflow induced by surface tension during the cooling stage And PMMA replicas of microlens arrays had the best surface quality i e the lowest roughness value of Ra 1 606 nm The surface roughness of injection molded microlens arrays is comparable with that of fine optical components in practical use In this regard injection molding might be a useful manufacturing tool for mass production of microlensarrays ReferencesReferencesReferencesReferences 1 Ruther P Gerlach B Go ttert J Ilie M Mu ller A O mann C 1997 Fabrication and characterization of microlenses realized by a modified LIGA process Pure Appl Opt 6 643 653 2 Popovic ZD Sprague RA Neville Connell GA 1988 Technique for monolithic fabrication of microlens array Appl Opt27 1281 1284 3 Beinhorn F Ihlemann J Luther K Troe J 1999 Micro lens arrays generated by UV laser irradiation of doped PMMA Appl Phys A68 709 713 4 Moon S Lee N Kang S 2003 Fabrication of a microlens array using micro compression molding with an electroformed mold insert J Micromech Microeng 13 98 103 5 Ong NS Koh YH Fu YQ 2002 Microlens array produced using hot embossing process Microelectron Eng 60 365 379 6 Lee S K Lee K C Lee SS 2002 A simple method for microlens fabrication by the modified LIGA process J Micromech Microeng 12 334 340 7 Kim DS Yang SS Lee S K Kwon TH Lee SS 2003 Physical modeling and analysis of
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年一级建造师考试试题完整附答案详解
- 2025年上海货运从业资格证考试题目及答案解析
- 2025年安全员B证考试试题附答案详解【研优卷】
- 2025年教师资格之幼儿保教知识与能力题库练习试卷B卷附答案
- 2025年房地产估价师之估价原理与方法基础试题库和答案要点
- 高考自荐信800字
- 电力公司安全管理课件
- 广西城市职业大学单招面试模拟试题及答案解析
- 建筑工程本科试题及答案专业版
- 微信保密观知识竞赛试题及答案
- 2025贵州毕节市市直事业单位面向基层公开考调工作人员考试笔试备考试题及答案解析
- 2025年高压电工作业(特种作业)考试题库(带答案)
- 交换机路由器课件
- (北师大2024版)生物八上全册知识点(默写版+背诵版)
- 装饰施工项目安全管理课件
- DB31∕T 1545-2025 卫生健康数据分类分级要求
- 安全文明施工措施费清单五篇
- QFSN-660-2-22型发电机检查性大修作业指导书
- 鲫鱼的外形与内部解剖
- 民间非营利组织会计制度
- 自闭症儿童的结构化-12秋(课堂PPT)
评论
0/150
提交评论