北师大版必修二 1.5.1平行关系的判定 课件(44张).ppt_第1页
北师大版必修二 1.5.1平行关系的判定 课件(44张).ppt_第2页
北师大版必修二 1.5.1平行关系的判定 课件(44张).ppt_第3页
北师大版必修二 1.5.1平行关系的判定 课件(44张).ppt_第4页
北师大版必修二 1.5.1平行关系的判定 课件(44张).ppt_第5页
免费预览已结束,剩余39页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平行关系的判定 在空间中直线与平面有几种位置关系 1 直线在平面内 2 直线与平面相交 3 直线与平面平行 一 知识回顾 文字语言 图形语言 符号语言 怎样判定直线与平面平行呢 问题 二 引入新课 根据定义 判定直线与平面是否平行 只需判定直线与平面有没有公共点 但是 直线无限延长 平面无限延展 如何保证直线与平面没有公共点呢 在生活中 注意到门扇的两边是平行的 当门扇绕着一边转动时 另一边始终与门框所在的平面没有公共点 此时门扇转动的一边与门框所在的平面给人以平行的印象 1 分析实例 猜想定理 三 线面平行判定定理的探究 将课本的一边ab紧靠桌面 并绕ab转动 观察ab的对边cd在各个位置时 是不是都与桌面所在的平面平行 a b c d cd是桌面外一条直线 ab是桌面内一条直线 cd ab 则cd 桌面 猜想 如果平面外一条直线和这个平面内的一条直线平行 那么这条直线和这个平面平行 2 做一做 3 猜一猜 直线和平面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行 那么这条直线和这个平面平行 b a b a a 四 规律总结 1 定理三个条件缺一不可 注明 五 讨论定理中的条件缺失的情况 判断下列命题是否正确 若不正确 请用图形语言或模型加以表达 1 2 3 五 讨论定理中的条件缺失的情况 判断下列命题是否正确 若不正确 请用图形语言或模型加以表达 1 2 3 1 定理三个条件缺一不可 注 2 该定理作用 线线平行 线面平行 空间问题 平面化 3 定理告诉我们 要证线面平行 只要在面 内找一条线 与已知直线a平行 二 直线与平面平行判定定理的证明 如果平面外一条直线和这个平面内的一条直线平行 那么这条直线和这个平面平行 l m l m l 已知 求证 证明 l m l和m确定一平面 设平面 则 m 如果l和平面 不平行 则l和 有公共点 设l p 则点p m 于是l和m相交 这和l m矛盾 l 六 理论提升 1 判定定理的三个条件缺一不可 简记为 线线平行则线面平行 平面化 空间问题 2 实践 口答 如图 长方体abcd a b c d 六个表面中 与ab平行的平面是 与aa 平行的平面是 与ad平行的平面是 平面a b c d 和平面dcc d 平面bcc b 和平面dcc d 平面a b c d 和平面bcc b 判断下列命题是否正确 若正确 请简述理由 若不正确 请给出反例 1 如果a b是两条直线 且a b 那么a平行于经过b的任何平面 2 如果直线a和平面 满足a 那么a与 内的任何直线平行 3 如果直线a b和平面 满足a b 那么a b 4 过平面外一点和这个平面平行的直线只有一条 试一试 5 若直线a平行于平面内的无数条直线 则 七 典例精析 例1已知 空间四边形abcd中 e f分别是ab ad的中点 求证 ef 平面bcd 分析 ef在面bcd外 要证明ef 面bcd 只要证明ef和面bcd内一条直线平行即可 ef和面bcd哪一条直线平行呢 连结bd立刻就清楚了 例1已知 空间四边形abcd中 e f分别是ab ad的中点 求证 ef 平面bcd 证明 连接bd 因为ae eb af fd 所以ef bd 三角形中位线定理 因为 小结 在平面内找 作 一条直线与平面外的直线平行时可以通过三角形的中位线 梯形的中位线 平行线的性质等来完成 八 变式强化 如图 在空间四面体中 e f m n分别为棱ab ad dc bc的中点 变式一 1 四边形efmn 是什么四边形 平行四边行 变式二 2 直线ac与平面efmn的位置关系是什么 为什么 ac与平面efmn平行 变式三 3 在这图中 你能找出哪些线面平行关系 直线bd与平面efmn 直线ac与平面efmn 直线ef与平面bcd 直线fm与平面abc 直线mn与平面abd 直线en与平面acd 九 演练反馈 判断下列命题是否正确 1 一条直线平行于一个平面 这条直线就与这个平面内的任意直线平行 2 直线在平面外是指直线和平面最多有一个公共点 3 过平面外一点有且只有一条直线与已知平面平行 4 若直线平行于平面内的无数条直线 则 5 如果a b是两条直线 且 那么a平行于经过b的任何平面 2 如图 正方体中 e为的中点 试判断与平面aec的位置关系 并说明理由 证明 连接bd交ac于点o 连接oe 随堂练习 两个全等的正方形abcd abef不在同一平面内 m n是对角线ac bf的中点求证 mn 面bce 练一练 p q 引申 m n是ac bf上的点且am fn 求证 mn 面bce 关键 在平面内找 作 一条直线与平面外的直线平行 在寻找平行直线时可以通过三角形的中位线 梯形的中位线 平行线的性质等来完成 十 总结提炼 1 证明直线与平面平行的方法 1 利用定义 2 利用判定定理 直线与平面没有公共点 2 数学思想方法 转化的思想 假设直线a不平行于平面 则a p 定理 如果不在平面内的一条直线和平面内的一条直线平行 那么这条直线和这个平面平行 证明 用反证法 课外阅读 已知 p是平行四边形abcd所在平面外一点 m为pb的中点 求证 pd 平面mac o 试一试 2 已知e f分别为正方体abcd a1b1c1d1棱bc 1 1的中点 求证 ef 平面bb1d1d d 取bd中点o 则oe为 bdc的中位线 1 为平行四边形 ef 1 ef 平面bb1dd1 e f o 证明 平面与平面平行的判定 1 平行 2 相交 1 平面与平面有几种位置关系 没有公共点 有一条公共直线 复习引入 问1 两个平面平行 那么其中一个平面的直线与另一个平面的位置关系如何 平行 问2 如果一个平面内的所有直线 都与另一个平面平行 那么这两个平面的位置关系如何 平行 结论 两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题 当然我们不需要证明所有直线都与另一平面平行 那么需要几条直线才能说明问题呢 复习引入 2 问题 还可以怎样判定平面与平面平行呢 两平面平行 两平面相交 探究 两平面平行 两平面相交 e f 直线的条数不是关键 探究 直线相交才是关键 探究 线不在多 重在相交 2 平面与平面平行的判定定理 若一个平面内两条相交直线分别平行于另一个平面 则这两个平面平行 1 该定理中 两条 相交 都是必要条件 缺一不可 2 该定理作用 线面平行 面面平行 3 应用该定理 关键是在一平面内找到两条相交直线分别与另一平面内两条直线平行即可 线线平行 线面平行 面面平行 判断下列命题是否正确 并说明理由 1 若平面内的两条直线分别与平面平行 则与平行 2 若平面内有无数条直线分别与平面平行 则与平行 3 平行于同一直线的两个平面平行 4 两个平面分别经过两条平行直线 这两个平面平行 5 过已知平面外一条直线 必能作出与已知平面平行的平面 练习 证明 因为abcd a1b1c1d1为正方体 所以d1c1 a1b1 d1c1 a1b1又ab a1b1 ab a1b1 d1c1 ab d1c1 ab d1c1ba是平行四边形 d1a c1b 又因为d1a平面c1bd cb平面c1bd 由直线与平面平行的判定 可知 同理d1b1 平面c1bd 又d1a d1b1 d1 所以 平面ab1d1 平面c1bd d1a 平面c1bd 平行四边形对边平行是常用的找平行线的方法 拓展 如果一个平面内有两条相交直线与另一个平面内的两条相交直线分别平行 那么这两个平面平行 练2 正方体abcd a1b1c1d1中 若m n p q分别是棱a1d1 a1b1 bc cd的中点 求证 平面amn 平面c1qp 练1 正方体abcd a1b1c1d1中 若m n e f分别是棱a1b1 a1d1 b1c1 c1d1的中点 求证 平面amn 平面efdb k 变式 练习 c1 a c b1 b m n a1 f 证明 取a1c1中点f 连结nf fc n为a1b1中点 m是bc的中点 nfcm为平行四边形 故mn cf mn 平面aa1c1c 例如图 三棱柱abc a1b1c1中 m n分别是bc和a1b1的中点 求证 mn 平面aa1c1c 练习 练1 三棱柱abc a1b1c1中 e是ac1上的点 f是cb1上的中点 求证 a1b 平面adc1 法一 线面平行判定定理连接bc1 则de为 abc1中位线 所以ef ab 又ef平面abc ab平面abc 故ef 平面abc 法二 由面面平行判定线面平行取cc1的中点g 连接ge和gf 则ge为 acc1中位线 所以ge ac 又ge平面abc ac平面abc 故ge 平面abc g 同理可证gf 平面abc 又ge gf g 所以面gef 面abc 例如图 四棱锥p abcd中 底面abcd是正方形 m n分别是ab pc的中点 求证 mn 平面pad h g 法二 取dc的中点g 连接gn gm 往证面gmn 面pad即可 证明 取pd的中点h 连接hn ah 在三角形 pdc中 hn为三角形中位线 所以hn dc且hn dc又因为底面为正方形 且m为ab中点 所以am dc且am dc am hn且am hn即amnh为平行四边形 故mn ah又ah平面pad mn平面pad 故mn 平面pad 练 如图 四棱锥p abcd中 底面abcd是正方形 pad是正三角形 e f分别是pc bd的中点 求证 ef 平面pad 证明 分别取pd ad的中点g h 连接ge hf gh在 pdc中 ge为三角形中位线 所以ge dc且ge dc同理 hf ab且hf ab又 底面为正方形 am dc且am dc ge hf且ge hf即hfeg为平行四边形 故ef gh又gh平面pad ef平面pad 故ef 平面pad g h 练习 例如图 点b为 acd所在平面外一点 m n分别为 abc abd的重心 1 求证 mn 平面acd 2 若底面边长为1为正三角形 求线段的mn的长度 解 1 分别连接bm bf交ac ad于点e f 因为m n分别为对应三角形的重心 故e f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论