自向量回归模型var的研究解读.ppt_第1页
自向量回归模型var的研究解读.ppt_第2页
自向量回归模型var的研究解读.ppt_第3页
自向量回归模型var的研究解读.ppt_第4页
自向量回归模型var的研究解读.ppt_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一 向量自回归 VAR 模型二 ARCH模型三 单位根检验四 协整分析与ECM模型 第四章时间序列模型 VAR模型介绍江苏弘业期货经纪有限公司开户咨询Q 263528346地址 南京白下区中华路50号弘业大厦3158室杨经理 向量自回归的理念 联立方程的不足 把一些变量看成是内生的 另一些变量看作是外生的或前定的 估计前必须肯定方程组中的方程是可识别的 为了达到识别的目的 常常要假定某些前定变量仅出现在某些方程中 因此 往往是主观的 VAR 如果在一组变量之中有真实的联立性 那么这些变量就应平等地加以对待 而不应该事先区分内生和外生变量 VAR模型的矩阵表示 VAR模型的矩阵表示 Yi是内生变量 有m个 Xj为外生变量 有n个 内生变量的滞后期为p期 外生变量的滞后期为r期 a和b是参数 u是随机扰动项 无外生变量的VAR模型 例子 GDP与进出口总额的关系 1978年 2004年滞后3期 在Eviews统计软件的应用 在主菜单中选择Quick EstimateVAR或者在主窗口命令行输入var在变量滞后区间 lagintervals 中给出每个内生变量的滞后阶数 ARCH模型 模型提出背景 时序数据的异方差性从事股票价格 通货膨胀率 外汇汇率等金融时间序列预测时 这些变量的预测精度随时期的不同而有很大差异 差异特征很可能由于金融市场的波动易受消息 政局变动 政府货币与财政政策变化等因素的影响 一种特殊的异方差形式 误差项的方查主要依赖于前端时期误差的变化程度 即存在某种自相关性 模型形式 自回归条件异方差性模型 AutoregressiveConditionalHeteroscedasticityModel ARCH 简单形式即 t的方差依赖于前一期误差的平方 或者说 t存在着以 t 1的变化信息为条件的异方差 记成ARCH 1 模型形式 一般形式 t与多个时期的误差项有关 则一般形式为 记成ARCH p 如果系数至少有一个不显著为零 则称误差项存在着ARCH效应 推广称为广义ARCH模型 记成GARCH p q ARCH M模型 为反映ARCH效应的影响 计量经济模型可以设定成 在解释股票或债券等金融资产的收益时 由于金融资产的收益应当与其风险成正比 此时可用随机误差项的条件方差反映风险的大小 ARCH效应的检验 H0 1 2 p 0并通过下述辅助回归模型检验假设 可以利用F检验判断辅助回归模型的显著性或利用 n p R2进行检验 给定显著性水平 查相应的分布表 若统计量大于相应临界值 则拒绝原假设 模型存在异方差性 反之 不存在ARCH效应 ARCH检验在Eviews统计软件的应用 在方程窗口中选择view ResidualTest ARCHLMTest根据辅助回归模型的F或 2检验判断ARCH效应 注意 要逐次输入滞后期p的值 或 在方程窗口中选择view ResidualTest CorrelogramSquaredResiduals利用e2t的逐期偏相关系数可以大致判定ARCH效应情况 然后再利用方式1做更精确的检验 单位根检验 谬误回归 谬误回归 Spuriousregression 当用一个时间序列对另一个时间序列做回归时 虽然两者之间并无任何意义的关系 但是常常会得到一个很高的R2值 这只是因为两个时间变量都显示出强劲的趋势 而不是由于两者之间的真实关系 这样的回归结果就是谬误的 如果时间序列是非平稳的 就有可能出现谬误回归 如果时间序列是平稳的 那么是可以用OLS做回归的 问 什么是平稳的 随机过程 任何时间序列数据都可以把它看作由一个随机过程 stochasticorrandomprocess 产生的结果 一个具体的数据集可视为随机过程的一个 特殊的 实现 realization 也就是一个样本 随机过程和它的一个实现之间的区别可类比于横截面数据中总体和样本之间的区别 平稳随机过程 stationarystochasticprocess 如果一个随机时间序列Yt满足以下性质 则Yt是平稳的 弱平稳 均值 E Yt 常数 方差 var Yt 2 常数 协方差 k E Yt Yt k 只与间隔有关 一个时间序列不是平稳的 就称为非平稳时间序列 平稳时间序列 平稳性的解释 指时间序列的统计规律不随时间的推移而发生变化 直观上 一个平稳的时间序列可以看作是一条围绕其均值上下波动的曲线 有时 不平稳性也许是由于均值起了变化 平稳性分强平稳和弱平稳 本课程只介绍弱平稳 非平稳性 所谓时间序列的非平稳性 是指时间序列的统计规律随着时间的位移而发生变化 即生成变量时间序列的随机过程的特征随着时间而变化 实际中 只有极少数时间数据是平稳的 平稳时间序列的检验方法 自相关函数检验 略 样本相关图的特点如果是 从很高的值开始 非常缓慢地下降 一般来说这个时间序列是非平稳的 单位根检验 白噪声序列 whitenoise 如果随机序列ut是遵从零均值 同方差 无自相关 则称之为白噪声序列 均值 E ut 0方差 var ut 2协方差 E ui 0 uj 0 0 i与j不相等 单位根检验 具有趋势特征的经济变量受到冲击后的两种表现 逐渐回到原趋势 冲击的影响渐渐消失 不回到原趋势 呈现随机游走状态 影响具有持久性 这时若用最小二乘法 将得到伪回归 例如 GDP 随机游走 Yt Yt 1 t我们做回归 Yt Yt 1 t 1 如果发现 1 则我们说随机变量有一个单位根 在经济学中一个有单位根的时间序列叫做随机游走 randomwalk 随机游走的比喻 一个醉汉的游走 醉汉离开酒吧后在时刻t移动一个随机的距离ut 如果他无限地继续游走下去 他将最终漂移到离酒吧越来越远的地方 股票的价格也是这样 今天的股价等于昨天的股价加上一个随机冲击 随机游走的表达式 Yt Yt 1 t 1 等价于 Yt Yt 1 Yt 1 Yt 1 t等价于 Yt Yt 1 1 Yt 1 t等价于 Yt Yt 1 t 2 有单位根 1 0 单整 求积 一阶单整 integratedoforder 记为I 1 如果一个时间序列经过一次差分就变成平稳的 我们就说原始序列是一阶单整的 d阶单整 integratedoforder 记为I d 如果一个时间序列经过一次差分就变成平稳的 我们就说原始序列是d阶单整的 如果d 0 则其结果I 0 过程代表一个平稳时间序列 几种随机游走过程 纯随机游走 Yt Yt 1 t带漂移的随机游走 Yt Yt 1 t带趋势的随机游走 Yt t Yt 1 t其中 t是白噪声序列 单位根检验 DF检验 H0 1 0 注意 若H0成立 t检验无效 因为这时t统计量不服从t分布 在 1的假设下 将t统计量成为 tau 统计量 DF Dickey Fuller 检验 构造统计量 查表 要使用DF检验临界值表 判断 单位根检验 DF检验的方程式 H0 1 0 纯随机游走 Yt Yt 1 t带漂移的随机游走 Yt Yt 1 t带趋势的随机游走 Yt t Yt 1 t 单位根检验 ADF检验 DF检验假设了所检验的模型的随机扰动项不存在自相关 对有自相关的模型 需用ADF检验 ADF检验 将DF检验的右边扩展为包含Yt的滞后变量 其余同于DF检验 构造统计量查表 判断 单位根检验 ADF检验的方程式 Yt 0 1t Yt 1 Yt i t其中i从1到m 这一模型称为扩充的迪基 富勒检验 因为ADF检验统计量和DF统计量有同样的渐进分布 所以可以使用同样的临界值 例子 GDP序列的稳定性 检验GDP是几阶单整 单位根检验在Eviews统计软件的应用 在主菜单中选择quick seriesstatistics unitroottest输入要检验的变量确定选择参数 检验原始序列一阶差分序列二阶差分序列 纯随机游走带漂移的随机游走带趋势的随机游走 0表示DF检验非0表示ADF检验 单位根检验 注意 当检验结论为 不存在随机游走 我们得到的结论正确的可能性较大 当检验结果为 有随机游走 我们得到的结论正确性还有待进一步考证 协整分析与ECM 误差校正模型 ECM 协整的提出及概念 当两个变量都是非平稳时间序列 则可能存在伪回归 所以要检验序列的平稳性 如单位根检验 但是大多数序列都是非平稳的 为防止伪回归 这时的处理办法有两个 差分 但是会导致长期趋势的损失 协整 不平稳的几个变量的一个线性组合可能是平稳的 若平稳就是协整的 协整的比喻 若Yt与Xt都有以随机的方式上升的趋势 但是他们似有共同趋势 这一运动类似于两个舞伴 一个在随机游动 另一个也亦步亦趋地随机游动 这种同步就是协整时间序列 如果两个时间序列有协整关系 则OLS回归所给的回归结果未必就是谬误的 而且通常的t和F检验是有效的 如葛兰杰所说 可以把协整检验看成是避免出现谬误回归 情况的一个预检验 协整检验的意义及步骤 可以作为线性回归的诊断性检验 可以看作是避免伪回归的预检验 还可以看作是对经济理论的正确性检验 两变量的协整检验步骤 Step1Xt和Yt都是随机游走的序列 将Xt对Yt用OLS回归 得残差序列ut Step2检验ut的平稳性 若ut平稳 则Xt和Yt是协整的 否则就不是协整的 检验ut平稳性有两种方法 DF检验和ADF检验 误差校正模型ECM 思路 基本思路 若变量是协整的 则表明变量间存在长期的稳定关系 而这种长期的稳定关系是在短期动态过程的不断调整下得以维持 这种短期动态的调整过程就是误差校正机制 它防止了变量间长期关系的偏差在规模上或数量上的扩大 误差校正模型ECM 建模步骤 分两步 分别建立区分数据长期特征和短期特征的计量经济学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论